
Performance Monitoring

for the Cloud
Werner Keil

Director, Creative Arts & Technologies
@wernerkeil | @UnitAPI | wkeil@apache.org

Agenda

• Introduction

• Performance Co-Pilot

• Dropwizard Metrics

• Apache Sirona

• StatsD

• Demo

• Conclusion

© 2016 Creative Arts & Technologies 2

Who am I?

© 2016 Creative Arts & Technologies 3

• Consultant – Coach

• Creative Cosmopolitan

• Open Source Evangelist

• Software Architect

• Apache Committer

• JCP EC Member

• JSR 363 Co Spec Lead

• Java EE Guardian | DevOps Guy …

Twitter @wernerkeil | Email wkeil@apache.org

What is Monitoring?

© 2016 Creative Arts & Technologies 4

Monitoring applications is observing, analyzing and manipulating
the execution of these applications, which gives information
about threads, CPU usage, memory usage, as well as other
information like methods and classes being used.

A particular case is the monitoring of distributed applications,
aka the Cloud where an the performance analysis of nodes and
communication between them pose additional challenges.

A high-level view of Cloud Monitoring

© 2016 Creative Arts & Technologies 5

Challenges at System Level

• Efficient Scalability
• Supporting tens of thousands of monitoring tasks

• Cost effective: minimize resource usage

• Monitoring QoS
• Multi-tenancy environment

• Minimize resource contention between monitoring tasks

• Implication of Multi-Tenancy
• Monitoring tasks: adding, removing

• Resource contention between monitoring tasks

© 2016 Creative Arts & Technologies 6

Performance vs Number of Hosts

Number of hosts Performance (values per second)

100 100

1000 1000

10000 10000

60 items per host, update frequency once per minute

Number of hosts Performance (values per second)

100 1000

1000 10000

10000 100000

600 items per host, update frequency once per minute

Monitoring Tips

• Regularly apply “Little’s Law” to all data... generic
(queueing theory) form:

Q = λ R

• Length = Arrival Rate x Response Time
• e.g. 10 MB = 2 MB/sec x 5 sec

• Utilization = Arrival Rate x Service Time
• e.g. 20% = 0.2 = 100 msec/sec x 2 sec

© 2016 Creative Arts & Technologies 8

Types of Monitoring

Monitoring Logs

• Logstash

• Redis

• Elasticsearch

• Kibana Dashboard

© 2016 Creative Arts & Technologies 9

Monitoring Performance

• Collectd

• Statsd

• PCP

• Graphite

• Database (eg: PSQL)

• Grafana Dashboard

Monitoring Logs – Kibana Dashboard

© 2016 Creative Arts & Technologies 10

Monitoring Performance

© 2016 Creative Arts & Technologies 11

How is this traditionally done?

• rsyslog/syslog-ng/journald

• top/iostat/vmstat/ps

• Mixture of scripting languages (bash/perl/python)

• Specific tools vary per platform

• Proper analysis requires more context

Performance Co-Pilot

© 2016 Creative Arts & Technologies 12

PCP

http://www.pcp.io

GitHub

https://github.com/
performancecopilot

http://www.pcp.io/
http://www.pcp.io/

What is PCP?

• Open source toolkit

• System-level analysis

• Live and historical

• Extensible (monitors, collectors)

• Distributed

• Unix-like component design

• Cross platform

• Ubiquitous units of measurement

© 2016 Creative Arts & Technologies 13

PCP Basics

Agents and Daemons

At the core we have two basic
components:

1. Performance Metric
Domain Agents

• Agents

2. Performance Metric
Collection Daemon

• PMCD

© 2016 Creative Arts & Technologies 14

PCP Architecture

© 2016 Creative Arts & Technologies 15

PCP Metrics

• pminfo --desc -tT --fetch disk.dev.read

disk.dev.read [per-disk read operations]

Data Type: 32-bit unsigned int InDom: 60.1

Semantics: counter Units: count

Help: Cumulative count of disk reads since boot time

Values:

inst [0 or "sda"] value 3382299

inst [1 or "sdb"] value 178421

© 2016 Creative Arts & Technologies 16

PCP Agents

© 2016 Creative Arts & Technologies 17

Webserver

(apache/nginx)

DBMS

Network

Kernel

PMCD

PCP Clients

© 2016 Creative Arts & Technologies 18

Agents
PMCD

pmie

pmstat

pmval

pminfo

pmchart

PCP Remote Clients

© 2016 Creative Arts & Technologies 19

Agents
PMCD

Clients

Remote
PMCD

PCP Data Model

• Metrics come from one source (host / archive)

• Source can be queried at any interval by any monitor tool

• Hierarchical metric names
e.g. disk.dev.read and aconex.response_time.avg

• Metrics are singular or set-valued (“instance domain”)

• Metadata associated with every metric
• Data type (int32, uint64, double, ...)

• Data semantics (units, scale, ...)

• Instance domain

© 2016 Creative Arts & Technologies 20

Performance Timeline

• Where does the time go?

• Where’s it going now?

• Where will it go?

© 2016 Creative Arts & Technologies 21

Performance Timeline – PCP Toolkit

• Archives

• Live Monitoring

• Modelling and statistical
prediction

© 2016 Creative Arts & Technologies 22

Performance Timeline – PCP Toolkit

• Yesterday, last week, last month, ...

• All starts with pmlogger
• Arbitrary metrics, intervals

• One instance produces one PCP archive for one host

• An archive consists of 3 files
• Metadata, temporal index, data volume(s)

• pmlogger_daily, pmlogger_check
• Ensure the data keeps flowing

• pmlogsummary, pmwtf, pmdumptext

• pmlogextract, pmlogreduce

© 2016 Creative Arts & Technologies 23

Custom Instrumentation (Applications)

© 2016 Creative Arts & Technologies 24

PCP – Parfait

Parfait has 4 main parts (for now)

• Monitoring

• DXM

• Timing

• Requests

© 2016 Creative Arts & Technologies 25

Parfait – Monitoring

• This is the ‘original’ PCP bridge metrics (heavily modified)

• Simple Java objects (MonitoredValues) which wrap a value
(e.g. AtomicLong, String)

• MonitoredValues register themselves with a registry (container)

• When values changes, observers notice and output accordingly
• PCP

• JMX

• Other (Custom/Extended)

• Very simple to use

• ‘Default registry’ (legacy concept)

© 2016 Creative Arts & Technologies 26

Parfait – DXM

• This is the PCP output side of aconex-pcp-bridge

• Rewritten to use the new non-custom MMV PMDA

• Advantages:
• Flexible, standardized, less maintenance work

• Disadvantages
• Have to assign ID to each metric

• Map metrics names to ‘pseudo-PCP’ names, e.g.:
• aconex.controllers.time.blah →

aconex.controllers[mel/blah].time

• Placement of brackets is significant (determines PCP domains)

© 2016 Creative Arts & Technologies 27

Parfait – Timing

• Logs the resources consumed by a request (an individual user
action)

• Relies on a single request being thread-bound (and threads
being used exclusively)

• Basically needs a Map<Thread, Value>

• Take the value for a Thread at the start, and at the end

• Delta is the ‘cost’ of that request

© 2016 Creative Arts & Technologies 28

Parfait – Timing Example

[2010-09-22 15:02:13,466 INFO][ait.timing.Log4jSink][http-8080-Processor3
gedq93kl][192.168.7.132][20][] Top taskssummaryfeatures:tasks

taskssummaryfeatures:tasks Elapsed time: own 380.146316 ms, total
380.14688 ms Total CPU: own 150.0 ms, total 150.0 ms User CPU: own 140.0 ms,
total 140.0 ms System CPU: own 10.0 ms, total 10.0 ms Blocked count: own
40, total 40 Blocked time: own 22 ms, total 22 ms Wait count: own 2, total
2 Wait time: own 8 ms, total 8 ms Database execution time: own 57 ms,
total 57 ms Database execution count: own 11, total 11 Database logical
read count: own 0, total 0 Database physical read count: own 0, total 0

Database CPU time: own 0 ms, total 0 ms Database received bytes: own
26188 By, total 26188 By Database sent bytes: own 24868 By, total 24868 By

Error Pages: own 0, total 0 Bobo execution time: own 40.742124 ms, total
40.742124 ms Bobo execution count: own 2, total 2 Bytes transferred via
bobo search: own 0 By, total 0 By Super search entity count: own 0, total 0

Super search count: own 0, total 0 Bytes transferred via super search: own
0 By, total 0 By Elapsed time during super search: own 0 ms, total 0 ms

© 2016 Creative Arts & Technologies 29

Parfait – Requests

• As well as snapshotting requests after completion, for many
metrics we can see meaningful ‘in-progress’ values

• Simple JMX bean which ‘walks’ in-progress requests

• Tie in with ThreadContext (MDC abstraction)

• Include UserID

• ThreadID

© 2016 Creative Arts & Technologies 30

PCP – Speed

Golang implementation of the PCP
instrumentation API

There are 3 main components
in the library

• Client

• Registry

• Metric

© 2016 Creative Arts & Technologies 31

PCP – Speed Metric

© 2016 Creative Arts & Technologies 32

• SingletonMetric
• This type defines a metric with no instance domain and only one value. It

requires type, semantics and unit for construction, and optionally takes a
couple of description strings. A simple construction

metric, err := speed.NewPCPSingletonMetric(

42, // initial value

"simple.counter", // name

speed.Int32Type, // type

speed.CounterSemantics, // semantics

speed.OneUnit, // unit

"A Simple Metric", // short description

"This is a simple counter metric to demonstrate the speed API", // long descr

)

Image © HitchhikersHandbook.com

PCP for
Containers

PCP for Containers – Cgroup Accounting

• [subsys].stat files below /sys/fs/cgroup

• individual cgroup or summed over children

• blkio

• IOPs/bytes, service/wait time – aggregate/per-dev

• Split up by read/write, sync/async

• cpuacct

• Processor use per-cgroup - aggregate/per-CPU

• memory

• mapped anon pages, page cache, writeback, swap, active/inactive
LRU state

© 2016 Creative Arts & Technologies 34

PCP for Containers – Namespaces

• Example: cat /proc/net/dev

• Contents differ inside vs outside a container

• Processes (e.g. cat) in containers run in different network, ipc,
process, uts, mount namespaces

• Namespaces are inherited across fork/clone

• Processes within a container share common view

© 2016 Creative Arts & Technologies 35

PCP Container Analysis – Goals

• Allow targeting of individual containers

• e.g. /proc/net/dev

• pminfo --fetch network

• vs

• pminfo –fetch –container=crank network

• Zero installation inside containers required

• Simplify your life (dev_t auto-mapping)

• Data reduction (proc.*, cgroup.*)

© 2016 Creative Arts & Technologies 36

PCP Container Analysis – Mechanisms

• pminfo -f –host=acme.com –container=crank network

• Wire protocol extension

• Inform interested PCP collector agents

• Resolving container names, mapping names to cgroups, PIDs, etc.

• setns(2)

• Runs on the board, plenty of work remains

• New monitor tools with container awareness

© 2016 Creative Arts & Technologies 37

What is Metrics?

• Code instrumentation

• Meters

• Gauges

• Counters

• Histograms

• Web app instrumentation

• Web app health check

© 2016 Creative Arts & Technologies 38

Metrics Reporters

• Reporters
• Console

• CSV

• Slf4j

• JMX

• Advanced reporters
• Graphite

• Ganglia

© 2016 Creative Arts & Technologies 39

Metrics 3rd Party Libraries

• AspectJ

• InfluxDB

• StatsD

• Cassandra

• Spring

© 2016 Creative Arts & Technologies 40

Metrics Basics

© 2016 Creative Arts & Technologies 41

• MetricsRegistry
• A collection of all the metrics for your application

• Usually one instance per JVM

• Use more in multi WAR deployment

• Names
• Each metric has a unique name

• Registry has helper methods for creating names

MetricRegistry.name(Queue.class, "items", "total")

//com.example.queue.items.total

MetricRegistry.name(Queue.class, "size", "byte")

//com.example.queue.size.byte

Metrics Elements

© 2016 Creative Arts & Technologies 42

• Gauges
• The simplest metric type: it just returns a value

final Map<String, String> keys = new HashMap<>();

registry.register(MetricRegistry.name("gauge", "keys"),
new Gauge<Integer>() {

@Override

public Integer getValue() {

return keys.keySet().size();

}

});

Metrics Elements (2)

© 2016 Creative Arts & Technologies 43

• Counters
• Incrementing and decrementing 64.bit integer

final Counter counter= registry.counter(MetricRegistry.name("counter",

"inserted"));

counter.inc();

Metrics Elements (3)

© 2016 Creative Arts & Technologies 44

• Histograms
• Measures the distribution of values in a stream of data

final Histogram resultCounts = registry.histogram(name(ProductDAO.class,

"result-counts");

resultCounts.update(results.size());

• Meters
• Measures the rate at which a set of events occur

final Meter meter = registry.meter(MetricRegistry.name("meter", "inserted"));

meter.mark();

Metrics Elements (4)

© 2016 Creative Arts & Technologies 45

• Timers
• A histogram of the duration of a type of event and a meter of the rate of its

occurrence

Timer timer = registry.timer(MetricRegistry.name("timer", "inserted"));

Context context = timer.time();

//timed ops

context.stop();

Metrics – Graphite Reporter

© 2016 Creative Arts & Technologies 46

final Graphite graphite = new Graphite(new
InetSocketAddress("graphite.example.com", 2003));

final GraphiteReporter reporter = GraphiteReporter.forRegistry(registry)

.prefixedWith("web1.example.com")

.convertRatesTo(TimeUnit.SECONDS)

.convertDurationsTo(TimeUnit.MILLISECONDS)

.filter(MetricFilter.ALL)

.build(graphite);

reporter.start(1, TimeUnit.MINUTES);

Metrics can be prefixed

Useful to divide environment metrics: prod, test

Metrics – Grafana Application Overview

© 2016 Creative Arts & Technologies 47

Apache Sirona – Inspired by JaMon

© 2016 Creative Arts & Technologies 48

Sirona Basics

© 2016 Creative Arts & Technologies 49

• Repository
• The repository is a singleton for the JVM. It is the entry

point to get access to counters and gauges.

public interface Repository extends Iterable<Counter> {

Counter getCounter(Counter.Key key);

void clear();

StopWatch start(Counter counter);

Map<Long, Double> getGaugeValues(long start, long end, Role
role);

void stopGauge(Role role);

}

Sirona Elements

© 2016 Creative Arts & Technologies 50

• Counter
• A counter is a statistic and concurrency holder. It aggregates the

information provided computing the average, min, max, sum of logs, ….

public interface Counter {
Key getKey();
void reset();
void add(double delta);
AtomicInteger currentConcurrency();
int getMaxConcurrency();
double getMax();
double getMin();
long getHits();
double getSum();
double getStandardDeviation();
double getVariance();
double getMean();
double getSecondMoment();

Sirona Elements (2)

© 2016 Creative Arts & Technologies 51

• Gauge
• A gauge is a way to get a measure. It is intended to get a history of a metric.

public interface Gauge {
Role role();
double value();

}

• StopWatch
• A StopWatch is just a handler for a measure with a counter.

public interface StopWatch {
long getElapsedTime();
StopWatch stop();

}

What is StatsD?

A network daemon that runs on the Node.js platform and listens
for statistics, like counters and timers, sent over UDP or TCP and
sends aggregates to one or more pluggable backend services
(e.g., Graphite).

StatsD was inspired (heavily) by the project (of the same name)
at Flickr.

© 2016 Creative Arts & Technologies 52

Image © HitchhikersHandbook.com

Demos

Links

• Performance Co-Pilot
http://www.pcp.io

• Dropwizard Metrics
http://metrics.dropwizard.io

• Apache Sirona
http://sirona.apache.org/

• StatsD
https://github.com/etsy/statsd/wiki

• Java Community Process
https://jcp.org/

© 2016 Creative Arts & Technologies 54

http://www.pcp.io/
http://metrics.dropwizard.io/
http://sirona.apache.org/
https://github.com/etsy/statsd/wiki
https://jcp.org/

Image © HitchhikersHandbook.com

Thank You

