
P
a
rf
a
it

Parfait
How it works +
where to from
here

(AKA “Through
a glass,
clearly”)

Paul Cowan
Aconex

September 2010

History of Parfait
● Originally developed as

aconex-pcp-bridge
● Specifically for getting PCP

values into a custom agent
● Expanded
● Improved
● Rewritten for MMV agent
● Open-sourced

The Basics
● Parfait has 3 main parts (for

now):
● Monitoring
● DXM
● Timing
● Requests

Monitoring
● This is the ‘original’ PCP bridge

metrics (heavily modified)
● Simple Java objects

(MonitoredValues) which wrap a
value (e.g. AtomicLong, String)

● MonitoredValues register
themselves with a registry
(container)

Monitoring
● When a value changes, a

number of observers get told,
and can output accordingly

● PCP
● JMX
● Other?

● Very simple to use
● ‘Default registry’ (legacy

concept)

Monitoring
● Also worth pointing out:

PollingMonitoredValue
● This is used when the value is

updated by something we don’t
control, can’t ‘subscribe’

● Thread checks periodically for
new value, updates Registry if
changed

DXM
● This is the PCP output side of

aconex-pcp-bridge
● Rewritten to use the new non-

custom MMV PMDA
● Advantages:

● flexible, standardised, less
maintenance work

● Disadvantages
● have to assign ID to each metric

DXM
● Map metrics names to ‘pseudo-

PCP’ names, e.g.:
● aconex.controllers.time.blah →

aconex.controllers[mel/blah].time

● Placement of brackets is
significant (determines PCP
domains)

Monitoring + DXM
(Pretty graph time!)

How it hangs together

Timing
● Logs the resources consumed by

a request (an individual user
action)

● Relies on a single request being
thread-bound (and threads
being used exclusively)

Timing
● Basically need a Map<Thread,

Value>
● Take the value for a Thread at

the start, and at the end
● Delta is the ‘cost’ of that

request

Timing
● Deltas can be output a number

of ways:
● Normal metrics

● Per ‘event’
● Total

● Logs (Log4jSink)
● HBase (HBaseSink) – in

progress!

Timing: Example
[2010-09-22 15:02:13,466 INFO][ait.timing.Log4jSink][http-
8080-Processor3 gedq93kl][192.168.7.132][20][] Top
taskssummaryfeatures:tasks taskssummaryfeatures:tasks

Elapsed time: own 380.146316 ms, total 380.14688
ms Total CPU: own 150.0 ms, total 150.0 ms User CPU: own
140.0 ms, total 140.0 ms System CPU: own 10.0 ms, total 10.0
ms Blocked count: own 40, total 40 Blocked time: own 22 ms,
total 22 ms Wait count: own 2, total 2 Wait time: own 8 ms,
total 8 ms Database execution time: own 57 ms, total 57 ms

Database execution count: own 11, total 11
Database logical read count: own 0, total 0 Database physical
read count: own 0, total 0 Database CPU time: own 0 ms, total 0
ms Database received bytes: own 26188 By, total 26188
By Database sent bytes: own 24868 By, total 24868 By Error
Pages: own 0, total 0 Bobo execution time: own 40.742124
ms, total 40.742124 ms Bobo execution count: own 2, total
2 Bytes transferred via bobo search: own 0 By, total 0 By
Super search entity count: own 0, total 0 Super search count:
own 0, total 0 Bytes transferred via super search: own 0 By,
total 0 By Elapsed time during super search: own 0 ms, total 0
ms

Requests
● As well as snapshotting requests

after completion, for many
metrics we can see meaningful
‘in-progress’ values

● Simple JMX bean which ‘walks’ in-
progress requests

● Tie in with ThreadContext (MDC
abstraction)

● Include UserID
● ThreadID

Requests - Example

Requests - Example

How it hangs together

Where do we use it?
● Instrument the app itself

(business actions) with metrics
● Instrument third-party libraries

(notably JDBC driver) for
metrics/timings

● Generate timings for inter-
process events (supersearch,
bobo)

How to use: Metrics
• Adding a new metric is trivial:
public class FileIndexer {
 private final MonitoredLongValue done =
 new MonitoredLongValue(
 “aconex.indexes.time”,
 “Time spend indexing”,
 MonitorableRegistry.DEFAULT_REGISTRY,
 // injection = better!
 0L, // initial value
 SI.NANO(SI.SECOND));

Add a line to pcp-metric-ids.txt:
 aconex.indexes.time 670

And use it!
 done.inc(timeSpent);

How to use: Timing
• Adding a new measurement needs a

new ThreadMetric
• Easiest to use ThreadCounter (glorified

ThreadLocal) and ThreadValueMetric:
• public class CoolThing {

 public final ThreadCounter coolThingsDone =
 new ThreadMapCounter();

 public void doCoolThing(...) {
 coolThingsDone.inc();
 }
}

How to use: Timing
• Then just add it to the

ThreadMetricSuite
• e.g. AconexMetricSuite
• controllerSuite.addMetric(

 new ThreadValueMetric("Cool things",
 Unit.ONE, "things.done.cool",
 "The number of cool things done",
 coolThing.getCoolThingsDone());
);

Will automatically appear for all
controllers

The Magic Sauce
• EventTimer has a bunch of metrics,

PCP prefix, etc
• Wired together by

SpringEventTimerInjector:
• Finds all Spring beans which use an

interface
• Tells the EventTimer about them
• Injects the timer into the bean
• Bean can now start/stop timing, with

a ‘tag’
•

Where to?
(what are the grand plans?)

● Timing becoming ‘1st-class’
citizen

● Multi-thread support
● Outputs: JMX (++), Hbase,

RabbitMQ (Rocksteady)?
● Inputs: AOP,

Hibernate
● Distributed (à

la Dapper)?

http://code.google.com/p/rocksteady/
http://highscalability.com/blog/2010/4/27/paper-dapper-googles-large-scale-distributed-systems-tracing.html

Staying Involved
● Project uses Mercurial now (easy to

branch/contribute)
● Releases happen to central (much

simpler to manage)
● Adding others (psmith?) to repo

uploaders
● Follow the Google Code project!

● Mailing lists: -user and -dev
● Watch commits

● Use, contribute, keep in touch!

http://code.google.com/p/parfait

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

