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History of Parfait
● Originally developed as 

aconex-pcp-bridge
● Specifically for getting PCP 

values into a custom agent
● Expanded
● Improved
● Rewritten for MMV agent
● Open-sourced



The Basics
● Parfait has 3 main parts (for 

now):
● Monitoring
● DXM
● Timing
● Requests



Monitoring
● This is the ‘original’ PCP bridge 

metrics (heavily modified)
● Simple Java objects 

(MonitoredValues) which wrap a 
value (e.g. AtomicLong, String)

● MonitoredValues register 
themselves with a registry 
(container)



Monitoring
● When a value changes, a 

number of observers get told, 
and can output accordingly

● PCP
● JMX
● Other?

● Very simple to use
● ‘Default registry’ (legacy 

concept)



Monitoring
● Also worth pointing out: 

PollingMonitoredValue
● This is used when the value is 

updated by something we don’t 
control, can’t ‘subscribe’

● Thread checks periodically for 
new value, updates Registry if 
changed



DXM
● This is the PCP output side of 

aconex-pcp-bridge
● Rewritten to use the new non-

custom MMV PMDA
● Advantages:

● flexible, standardised, less 
maintenance work

● Disadvantages
● have to assign ID to each metric



DXM
● Map metrics names to ‘pseudo-

PCP’ names, e.g.:
● aconex.controllers.time.blah →

aconex.controllers[mel/blah].time

● Placement of brackets is 
significant (determines PCP 
domains)



Monitoring + DXM
(Pretty graph time!)



How it hangs together



Timing
● Logs the resources consumed by 

a request (an individual user 
action)

● Relies on a single request being 
thread-bound (and threads 
being used exclusively)



Timing
● Basically need a Map<Thread, 

Value>
● Take the value for a Thread at 

the start, and at the end
● Delta is the ‘cost’ of that 

request



Timing
● Deltas can be output a number 

of ways:
● Normal metrics

● Per ‘event’
● Total

● Logs (Log4jSink)
● HBase (HBaseSink) – in 

progress!



Timing: Example
[2010-09-22 15:02:13,466 INFO ][ait.timing.Log4jSink][http-
8080-Processor3 gedq93kl][192.168.7.132][20][] Top
taskssummaryfeatures:tasks taskssummaryfeatures:tasks

Elapsed time: own 380.146316 ms, total 380.14688 
ms Total CPU: own 150.0 ms, total 150.0 ms User CPU: own 
140.0 ms, total 140.0 ms System CPU: own 10.0 ms, total 10.0 
ms Blocked count: own 40, total 40 Blocked time: own 22 ms, 
total 22 ms Wait count: own 2, total 2 Wait time: own 8 ms, 
total 8 ms Database execution time: own 57 ms, total 57 ms

Database execution count: own 11, total 11
Database logical read count: own 0, total 0 Database physical 
read count: own 0, total 0 Database CPU time: own 0 ms, total 0 
ms Database received bytes: own 26188 By, total 26188 
By Database sent bytes: own 24868 By, total 24868 By Error 
Pages: own 0, total 0 Bobo execution time: own 40.742124 
ms, total 40.742124 ms Bobo execution count: own 2, total 
2 Bytes transferred via bobo search: own 0 By, total 0 By
Super search entity count: own 0, total 0 Super search count: 
own 0, total 0 Bytes transferred via super search: own 0 By, 
total 0 By Elapsed time during super search: own 0 ms, total 0 
ms



Requests
● As well as snapshotting requests 

after completion, for many 
metrics we can see meaningful 
‘in-progress’ values

● Simple JMX bean which ‘walks’ in-
progress requests

● Tie in with ThreadContext (MDC 
abstraction)

● Include UserID
● ThreadID



Requests - Example



Requests - Example



How it hangs together



Where do we use it?
● Instrument the app itself 

(business actions) with metrics
● Instrument third-party libraries 

(notably JDBC driver) for 
metrics/timings

● Generate timings for inter-
process events (supersearch, 
bobo)



How to use: Metrics
• Adding a new metric is trivial:
public class FileIndexer {
 private final MonitoredLongValue done = 
   new MonitoredLongValue( 
       “aconex.indexes.time”,
       “Time spend indexing”,
       MonitorableRegistry.DEFAULT_REGISTRY,
            // injection = better!
       0L,  // initial value
       SI.NANO(SI.SECOND));

Add a line to pcp-metric-ids.txt:
   aconex.indexes.time 670

And use it!
   done.inc(timeSpent);



How to use: Timing
• Adding a new measurement needs a 

new ThreadMetric
• Easiest to use ThreadCounter (glorified 

ThreadLocal) and ThreadValueMetric:
• public class CoolThing {

 public final ThreadCounter coolThingsDone =
   new ThreadMapCounter();

 public void doCoolThing(...) {
   coolThingsDone.inc();
 }
}

    



How to use: Timing
• Then just add it to the 

ThreadMetricSuite
• e.g. AconexMetricSuite
• controllerSuite.addMetric(

   new ThreadValueMetric("Cool things", 
     Unit.ONE, "things.done.cool",
     "The number of cool things done",
     coolThing.getCoolThingsDone());
);

Will automatically appear for all 
controllers



The Magic Sauce
• EventTimer has a bunch of metrics, 

PCP prefix, etc
• Wired together by 

SpringEventTimerInjector:
• Finds all Spring beans which use an 

interface 
• Tells the EventTimer about them
• Injects the timer into the bean
• Bean can now start/stop timing, with 

a ‘tag’
•



Where to?
(what are the grand plans?)

● Timing becoming ‘1st-class’ 
citizen

● Multi-thread support
● Outputs: JMX (++), Hbase, 

RabbitMQ (Rocksteady)?
● Inputs: AOP,

Hibernate
● Distributed (à 

la Dapper)?

http://code.google.com/p/rocksteady/
http://highscalability.com/blog/2010/4/27/paper-dapper-googles-large-scale-distributed-systems-tracing.html


Staying Involved
● Project uses Mercurial now (easy to 

branch/contribute)
● Releases happen to central (much 

simpler to manage)
● Adding others (psmith?) to repo 

uploaders
● Follow the Google Code project!

● Mailing lists: -user and -dev
● Watch commits

● Use, contribute, keep in touch!

http://code.google.com/p/parfait
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