Laser-Guided Performance

Management

MXUG #5

An introduction
to Parfait

Paul Cowan

Aconex
paul@custardsource.co

July 2009


mailto:paul@custardsource.com

Our Problem

(and maybe yours too?)

e Lots of users = |ots of potential
problems

* Big database = big problems

 Legacy codebase - not written
with performance in mind

« Wildly variable usage patterns

- Several orders of magnitude
difference in amount of data

- Unpredictable hot spots




Finding the Problems

(Not as easy as you’d think)
« Approach #1: profile hotspots

- Not always easy (access to data,
ability to reproduce, Heisenberg)

« Approach #2: use a simple timing
framework

- Time each request
- Look for patterns
- Not always accurate

e See victims, not causes
« Not alwavs about wall time!




The Goal

(And the ace up our sleeve)

« \Want to get really deep
performance metrics

« Export into Performance Co-Pilot

- OSS framework built @ SGI

- Collects lots of data with low
overhead

- Archive, search, compare
patterns, fire alerts...

« Want to easily instrument 3rd-
party code




The Brainwave

* Java Webapps have a feature
which opens up a world of data

 One request is pinned to one
thread for the duration

« And the thread likewise doesn't
serve multiple requests

« Whatever we can measure on
the thread, we can extrapolate
out to the action




How we measure

« Have a bunch of per-thread
counters

- Not aware of actions, don't
care

 Snapshot values at request start
 Snapshot again at request end
* Delta is that action’s “cost”

* Find expensive actions, & fix
them




Built-Iin sources

(Here's one they prepared earlier...)
* JVM gives us a bunch of data sources

e ManagementFactory.getThreadMXBean ()
.getThreadCPUTime (...) /
.getThreadUserTime (...) /
.getThreadInfo(...)

.getWaitedCount ()
.getWaitedTime () /
.getBlockedCount (
.getBlockedTime ()

/

)/

Suddenly, we can see which user
actions are causing contention

Stats in aggregate, logs for detalil
 Which user is eating our CPU?




Holy Crap!

Our performance sucks!

==FElapsed (Email)
==Elapsed (Buy)

5000 10000 15000 20000 25000 30000 35000 40000

Elapsed time




Holy Crap!

Our performance sucks!

==Elapsed (Email)
==Elapsed (Buy)
CPU (Email)

5000 10000 15000 20000 25000 30000 35000 40000

Elapsed time




Holy Crap!

Our performance sucks!

==Elapsed (Email)

==Elapsed (Buy)
CPU (Email)

==Blocked (Email)

- i

5000 10000 15000 20000 25000 30000 35000 40000

Elapsed time

EmailSender:sendMail Elapsed time: own 1078ms, total 1078ms

Blocked time: own 623ms, total 623ms Wait time: own 455ms,
total A55ms llser CPlI: own Oms toftal Oms




Adding your own

public class StatAppender implements Appender
public ThreadLocal<Long> LOG COUNT =
public void doAppend (LoggingEvent e) ({

LOG COUNT.put (LOG COUNT.get () + 1);




Adding your own

public class StatAppender i1mplements Appender {
public ThreadLocal<Long> LOG COUNT =
public void doAppend (LoggingEvent e) {
LOG COUNT.put (LOG COUNT.get () + 1);
}
}

. add to log4d4j.xml, then ..

metricSulite.addMetric (

new AbstractThreadMetric (

"Log message count", "", "logcount", "..")

{

public long getCurrentValue () {
StatAppender s = (StatAppender)
Logger.getLogger (..) .getAppender ("blah") ;

return s.LOG COUNT.get () ;

}) s




More stuff to measure

(When all you have is a hammer...)
« Custom JDBC driver gives us
- DB execution counts + times
- DB physical/logical I/Os
- DB CPU time (!)

.« Error counts through custom
error handling mechanism




So what do we get?
(Pretty graph time!)




So what do we get?

(Pretty graph time!)

B = B oo

Bl aconsx.contmlies.time[melComespondence]

[CJaconex.contmlies.count[me lComespo ndsa nca]

ARCHIVE




What COULD we do?

(There must be more nails somewhere)

« More metrics:
- Bytes read/written to client

- Native library might expose some
good OS metrics

 If you can read the current thread, you
can read other threads

- Write our own ‘top’

- Which threads are hogging resources
- and doing what?

« AOP advice - even more transparent
« Deal with background worker threads




« Now open-sourced as ‘Parfait’

* Includes general PCP library
(dxm)

 Modular (not tied to any
iInput/output mechanism)

e Lives on

 Hungry for parfalt

users and
contributors!

i
nmmy |
s——
.‘1



http://code.google.com/p/parfait

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

