
L
a
se

r-
G

u
id

e
d

 P
e
rf

o
rm

a
n
ce

M

a
n
a
g

e
m

e
n

t
MXUG #5
An introduction
to Parfait

Paul Cowan
Aconex
paul@custardsource.com

July 2009

mailto:paul@custardsource.com

Our Problem
(and maybe yours too?)

● Lots of users = lots of potential
problems

● Big database = big problems
● Legacy codebase – not written

with performance in mind
● Wildly variable usage patterns

● Several orders of magnitude
difference in amount of data

● Unpredictable hot spots

Finding the Problems
(Not as easy as you’d think)

● Approach #1: profile hotspots
● Not always easy (access to data,

ability to reproduce, Heisenberg)
● Approach #2: use a simple timing

framework
● Time each request
● Look for patterns
● Not always accurate

● See victims, not causes
● Not always about wall time!

The Goal
(And the ace up our sleeve)

● Want to get really deep
performance metrics

● Export into Performance Co-Pilot
● OSS framework built @ SGI
● Collects lots of data with low

overhead
● Archive, search, compare

patterns, fire alerts...
● Want to easily instrument 3rd-

party code

The Brainwave
● Java Webapps have a feature

which opens up a world of data
● One request is pinned to one

thread for the duration
● And the thread likewise doesn't

serve multiple requests
● Whatever we can measure on

the thread, we can extrapolate
out to the action

How we measure
● Have a bunch of per-thread

counters
● Not aware of actions, don’t

care
● Snapshot values at request start
● Snapshot again at request end
● Delta is that action’s “cost”
● Find expensive actions, kill fix

them

Built-in sources
(Here's one they prepared earlier...)

● JVM gives us a bunch of data sources
● ManagementFactory.getThreadMXBean()
 .getThreadCPUTime(...) /
 .getThreadUserTime(...) /
 .getThreadInfo(...)
 .getWaitedCount() /
 .getWaitedTime()/
 .getBlockedCount() /
 .getBlockedTime()

• Suddenly, we can see which user
actions are causing contention

• Stats in aggregate, logs for detail
● Which user is eating our CPU?

We've all been here...

There's more to it...

Mystery not solved
(But at least we know where to look)

EmailSender:sendMail Elapsed time: own 1078ms, total 1078ms
Blocked time: own 623ms, total 623ms Wait time: own 455ms,
total 455ms User CPU: own 0ms, total 0ms

Adding your own
public class StatAppender implements Appender {
 public ThreadLocal<Long> LOG_COUNT = …
 public void doAppend(LoggingEvent e) {
 LOG_COUNT.put(LOG_COUNT.get() + 1);
 }
}

Adding your own
public class StatAppender implements Appender {
 public ThreadLocal<Long> LOG_COUNT = …
 public void doAppend(LoggingEvent e) {
 LOG_COUNT.put(LOG_COUNT.get() + 1);
 }
}

 … add to log4j.xml, then …

metricSuite.addMetric(
 new AbstractThreadMetric(
 "Log message count", "", "logcount", "…")
 {
 public long getCurrentValue() {
 StatAppender s = (StatAppender)
 Logger.getLogger(…).getAppender("blah");
 return s.LOG_COUNT.get();
 }
 });

More stuff to measure
(When all you have is a hammer...)

● Custom JDBC driver gives us
● DB execution counts + times
● DB physical/logical I/Os
● DB CPU time (!)

● Error counts through custom
error handling mechanism

So what do we get?
(Pretty graph time!)

So what do we get?
(Pretty graph time!)

What COULD we do?
(There must be more nails somewhere)

● More metrics:
● Bytes read/written to client
● Native library might expose some

good OS metrics
● If you can read the current thread, you

can read other threads
● Write our own ‘top’
● Which threads are hogging resources

– and doing what?
● AOP advice – even more transparent
● Deal with background worker threads

Where's it going?
(And can I get on board, man?)

● Now open-sourced as ‘Parfait’
● Includes general PCP library

(dxm)
● Modular (not tied to any

input/output mechanism)
● Lives on Google Code
● Hungry for

users and
contributors!

http://code.google.com/p/parfait

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

