Performance Monitoring 5
for the Cloud \.;\/

Werner Keil
JSR 363 Maintenance Lead
@wernerkeil

October 18, 2017



i T
O JOONTTIA
L | > | 12

Agenda

,'1'_‘514 21 -
S o el ey LU TR
e el B A ARRAAR AR
I ,.. l:‘. i

Introduction

Performance Co-Pilot

-; );_(f”.:\f:_!:‘
|
"l

" , |
N u[u [:“., S =, Eals
-~ ‘J . L L N f ' " “'“ " I 1

Dropwizard Metrics
MicroProfile Metrics
Prometheus

StatsD

Demo

1 =
N o Ok~ obd-=

_fa
o

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.



‘..,

- . - o .“n .
R R P Y e Y -
L . . 4o W N IENNNNNILLLLE Bey T
i T 1 ] : ; e o
| N L '\_;‘, p < - — 7/ \k | T B S
1 |||| I “II = : — o, e RPECERR I . gt B b e BTN DL SN T
I Lr { i 1 B (T
g | =il |l ST | | TN ] D [neenannane f(ens i}

Who am |?

—

Werner Kell

* Consultant — Coach

* Creative Cosmopolitan
* Open Source Evangelist
* Software Architect

* Spec Lead - JSR363

* Individual JCP Executive Committee Member

__fa
-

#Monitoring #Performance

© 2017 Creative Arts & Technologies and others. All rights reserved.



What is Monitoring?

Al IO
Ll

” applications is observing, analyzing and
E{ manipulating the execution of these applications, which gives
™  information about threads, CPU usage, memory usage, as well
1 as other information like methods and classes being used.
= A particular case is the monitoring of distributed
‘" applications, aka the where an the performance
analysis of nodes and communication between them pose
= additional challenges.
\ \
-

© 2017 Creative Arts & Technologies and others. All rights reserved.

#Monitoring #Performance



A high-level view of Cloud
 Monitoring

o i A i) 3 f

@ CI Violation
\\ .

S e ~_ Detection

', [? Application™__

e S —

onitoring Service R
Monitoring ) " Trace
= Monjtori > “ MVVI?“‘."%\J,W Recordin
Monitoring . ,{\ i g
Task =SS SRS |

System

- T

-~ T
& &3 “y /./f’”/ T~ n Data Analysis
-~ —

= &3 &3 Network
A

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.

o e ., ‘ — an —
‘ ‘ I|||II J'- | I I “ );} v\'\ “ ‘
| [y r I L
- -~ - LR BLISL I8




+¢ Challenges at System Level

.‘v“‘ A\ J IAI § s
§ Lormed W58 ]
Rl 0T

« Efficient Scalability
— Supporting tens of thousands of monitoring tasks
— Cost effective: minimize resource usage

1P N TR |

&  * Monitoring QoS
j — Multi-tenancy environment
i 1] — Minimize resource contention between monitoring tasks
=| e Implication of Multi-Tenancy
——, — Monitoring tasks: adding, removing
o — Resource contention between monitoring tasks
L

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.



T 60 items per host, update frequency once per minute
s Performance (values per second)
BE 100 100
“ 1000 1000
EL 600 items per host, update frequency once per minute
| Number of hosts Performance (values per second)
= |
— 100 1000
= 1000 10000

¥ o ww
-

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.



ORI T

‘x.‘ 3 -
: e T~ |
)| I 3 s - ——— —= ~
1 el 1}
0 enannn ann (e iy
T — [ Y ¢ 1 4 L A%

Monitoring Tips

« Regularly apply “Little’s Law” to all data... generic
(queueing theory) form:

Q=AR

7 & -’ |'|'. il _!!.!_ ""“ 2 l "j::.-_

mE i PEn_
1 || I = J|| __"f..l,...(... = R
oy s X | ieimle

* Length = Arrival Rate x Response Time
—e.g. 10 MB = 2 MB/sec x 5 sec

e Utilization = Arrival Rate x Service Time
—e.g. 20% = 0.2 =100 msec/sec x 2 sec
__fa

b

#Monitoring #Performance

© 2017 Creative Arts & Technologies and others. All rights reserved.



DAL
| JOCTCTTONTTW JCTTRCTOIAR

S

Monitoring Logs
* Logstash

* Redis

i - Elasticsearch

=| °+ Kibana Dashboard

Types of Monitoring

Monitoring Performance

Collectd

Statsd

PCP

Graphite

Database (eg: PSQL)

Grafana Dashboard

#Monitoring #Performance

© 2017 Creative Arts & Technologies and others. All rights reserved.



Monitoring Logs — Kibana
Dashboard

-4 Logstash Search

P o) (58] @ pro o) BSS © pog () 317) @ oF ) (2290 @ 8 ) (121)  court Dir 30m | (RR14 1

0O 0 %+ x

0 %0 100 of 500 awvaliabio for pagng
cllentip
Saoes ascrty S 167.12.22.189
SEDNRS) 164 87.170.73
Suooses o < 222 20.102.258

LR W) 138 226 6681

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.



Monitoring Performance

==&  How is this traditionally done?

S

* rsyslog/syslog-ng/journaid

il

]

+ topl/iostat/vmstat/ps

Al

L _ —~ b g b ACE [INNNNNPLLLE S BT
. = = v h ; SRS | ¥ e S NS
4 1t . | | i N L e NS A
|||| II = — e e - bl el o gl WPy MDY LSS Ty,
00N SRR Ry (i) =2 ot L]
| o= \ g ' 3|
il | X NN e 0w A Y] R eenannn ane fann an i
Bt < T "l ||1.u' ,..1 fof” 5 ¥ J 3 1 J ¢ 1 ¥ 4 LIy

* Mixture of scripting languages (bash/perl/python)
« Specific tools vary per platform

* Proper analysis requires more context

1A
o

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.



Performance Co-Pilot

PCP
http://www.pcp.io

GitHub
https://github.com/performancecopilot

' PERFORMANCE

CO-PILOT

© 2017 Creative Arts & Technologies and others. All rights reserved.


http://www.pcp.io/
https://github.com/performancecopilot

@& Whatis PCP?

o A Ee S IR N OWLLLL LN
oy s - e ——= 1
<l. l ! H I -_‘4 .?‘"
i il B A ARAAAR RRR AA0 R plm
T Y T * | v

« Open source toolkit
e System-level analysis
* Live and historical
 Extensible (monitors, collectors)
. » Distributed
g * Unix-like component design

* Cross platform
* Ubiquitous units of measurement

1 : Al :" | "un J_!!_ |||.

= _,;-'“":\f'- =

e
RO [l f
.1 ENLISL B

=
=11

]

|

—

__fa

A

#Monitoring #Performance

l

© 2017 Creative Arts & Technologies and others. All rights reserved.



%+ PCP Basics
“-sd  Agents and Daemons
B At the core we have two basic
-
& components:
i 1. Performance Metric
= Domain Agents
T
 Agents
2. Performance Metric
Collection Daemon
5

‘\" - PMCD

#Monitoring #Performance

© 2017 Creative Arts & Technologies and others. All rights reserved.



[}
nane flannan iy

PCP Architecture

=i . Kernel

-

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.



il
1 l Y

” — 2 g AL : NNNNPILLLL ey
/ B = ‘ = felaiatenl -l bl s e WAL
' ) i e b ) e BT RS B BN
|||| F = — e — bl mmm e Tl g e IO DB N Ty
= HICIONIHG SR aipy (RN S PR A s
_ 4 = PR el L.f Wy NI | ) I e R YT T i

PCP Metrics

disk.dev.read [per-disk read operations]
Data Type: 32-bit unsigned int InDom: 60.1
Semantics: counter Units: count
Help: Cumulative count of disk reads since
boot time

Values:
inst [0 or "sda"| value 3382299 ;
inst [1 or "sadb"] value 778421 ‘
__fa

o ’

4

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.



S

[ JOCTLTTONTOW ROTTRCTTIH

l vy
oL WO

A

1
¥

i s | | ST i

© 2017 Creative Arts & Technologies and others. All rights reserved.

#Monitoring #Performance




@ PCP Clients

4

W i B o Y

#Monitoring #Performance

© 2017 Creative Arts & Technologies and others. All rights reserved.



PCP Remote Clients

v
'a"
v
fr—
14—
5 ¥
e
-
L —
_'—
.
.
"\
I
»

A

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.




T
|

0 enannn ann (e iy
[, ] T | > ! v

ok 7 )5
e ol —_ L = e S
N P50 . e beadl = 1| “aaa
AT | | i
—— e ™= b

=0
vy F—A'_
4 .‘f'

l it 3
L 1 — =il

|

=
URHL L
(ialn

[l

1A
o

P

CP Data Model

Metrics come from one source (host / archive)
Source can be queried at any interval by any monitor tool

Hierarchical metric names

e.g. disk.dev.read and aconex.response_time.avg
Metrics are singular or set-valued (“instance domain”)

Metadata associated with every metric
Data type (int32, uint64, double, ...)
Data semantics (units, scale, ...)
Instance domain

#Monitoring #Performance

© 2017 Creative Arts & Technologies and others. All rights reserved.



[}
nane flannan iy

Performance Timeline

 Where does the time go?

=| °* Where’s it going now? \

w-m ° Where willit go?

-

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.



Performance Timeline — Toolkit

 Archives

* Live Monitoring

 Modelling and statistical
prediction

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.



1
flannan )
1 * ! L2

#= Performance Timeline — PCP
e Toolkit

= * Yesterday, last week, last month, ...

"'i - All starts with pmlogger

* Arbitrary metrics, intervals

| T ==
1 | = 1 IRICIDRIEE S
= et LURNCIANT

 One instance produces one PCP archive for one host
* An archive consists of 3 files
 Metadata, temporal index, data volume(s)
 pmlogger_daily, pmlogger check
 Ensure the data keeps flowing

 pmlogsummary, pmwtf, pmdumptext

\\
_\—‘i",  pmlogextract, pmlogreduce

#Monitoring #Performance

© 2017 Creative Arts & Technologies and others. All rights reserved.



"
L

Custom Instrumentation
« (Applications)

s
'-s‘-
,".'.'*.
HI=
N = aconex.cache.evictions=16,long
— aconex.download.bytes=48,long
=Y aconex.download.files=56,long
}e‘,_EJ ' ;'conex.jmsmsgs.sents132,long
== aconex.jmsmsgs.queue=136,long
; ]] aconex.jvm.version=144 string
=
y —
=l
— 000011110000001001010
— 1010100001110001111110%9
111001010101010101010010C
—_
]

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.




WL
- v T — -
annnnn ann f [ann an )
¢ 1 L LA

PCP - Parfait

- Parfait has 4 main parts (for now)

E[ * Monitoring pa rfait &._,

. DXM java performance S

% o framework G
EE - Timing -

-y

 Requests

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.



S o BB |y
i i AT

TR\ J -
Tl N T~ |
1M | 11 | 1
M LR (aeeannn ann f[ane (i
T — [ Y ¢ 1 4 L A%

Parfait — Monitoring

* This is the ‘original’ PCP bridge metrics (heavily modified)
E{ - Simple Java objects (MonitoredValues) which wrap a value (e.qg.
AtomicLong, String)

mE i PEn_
1 || ||| == JII "u.f"l"l{l" SO
oy s X | ieimle
o

MonitoredValues register themselves with a registry (container)

When values changes, observers notice and output accordingly
- PCP

« JMX

Other (Custom/Extended)
* Very simple to use

o ‘Default registry’ (legacy concept)
—
N

OJ

#Monitoring #Performance

© 2017 Creative Arts & Technologies and others. All rights reserved.



s
|

0 enannn ann (e iy
[, ' T | > ! v

118y "|

Parfait — Timing

* Logs the resources consumed by a request (an individual user action)

1‘51 * Relies on a single request being thread-bound (and threads being used
exclusively)
- Basically needs a Map<Thread, Value>
- Take the value for a Thread at the start, and at the end
* Delta is the ‘cost’ of that request
)
N\
L

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.



He

. l".‘ i l; |

.,H‘
N e = S e e
9 | - ehadl = l (o2

N T | | ST

L
s

.IF‘.‘ :

[l

| {y
4
| ll[l
allnls

= ' i ‘ = R =
“ |||| I n’ I || ):Jva.:\“ ‘
— )
\’ | — J .}
A - X UL

1
o

#Monitoring #Performance

Parfait — Timing Example

[2010-09-22 15:02:13,466 INFO ][ait.timing.Log4jSink][http-8080-Processor3
gedq93k1][192.168.7.132][20][] Top taskssummaryfeatures:tasks
taskssummaryfeatures:tasks Elapsed time: own 380.146316 ms, total
380.14688 ms Total CPU: own 150.0 ms, total 150.0 ms User CPU: own 140.0 ms,
total 140.0 ms System CPU: own 10.0 ms, total 10.0 ms Blocked count: own 40,
total 40 Blocked time: own 22 ms, total 22 ms Wait count: own 2, total 2
Wait time: own 8 ms, total 8 ms Database execution time: own 57 ms, total 57
ms Database execution count: own 11, total 1l1Database logical read count: own
O, total © Database physical read count: own @, total © Database CPU time:
own © ms, total @ ms Database received bytes: own 26188 By, total 26188 By
Database sent bytes: own 24868 By, total 24868 By Error Pages: own 0, total
© Bobo execution time: own 40.742124 ms, total 40.742124 ms Bobo execution
count: own 2, total 2 Bytes transferred via bobo search: own © By, total © By
Super search entity count: own 0, total © Super search count: own 0, total ©
Bytes transferred via super search: own © By, total © By Elapsed time
during super search: own @ ms, total © ms

© 2017 Creative Arts & Technologies and others. All rights reserved.



T
|

0 enannn ann (e iy
[, ] T | > ! v

i s 1%
e ol —_ L = e S
;’ ’:‘-._'—r .:V.T‘ ."_ l _'n.,,.\‘_
N T | | AT Gl

=0
vy F—A'_
4 .‘f'

(=
L 1 — Sl ]

|

Tl 470l
Il.‘.l'

[l

1A
o

Parfait — Requests

can see meaningful ‘in-progress’ values

As well as snapshotting requests after completion, for many metrics we

Simple JMX bean which ‘walks’ in-progress requests
* Tie in with ThreadContext (MDC abstraction)
* Include UseriD

 ThreadlD

#Monitoring #Performance

© 2017 Creative Arts & Technologies and others. All rights reserved.



Y e 8 |

)| "I‘ bR "'n'
T S
“ll' o el

PCP - Speed

Golang implementation of the PCP

Instrumentation API

There are 3 main components
in the library

TR T R P -
[ JOCTLTTONTOW ROTTRCTTIAM

5
=S
¥ |
LS/ ]
Ll | ==
{ | =-
L] - -
o -
(e w
.-A

 Client
Registry

L=

e Metric

1

—

\"

#Monitoring #Performance

© 2017 Creative Arts & Technologies and others. All rights reserved.



! ;[;r

‘ l".‘ i l; |

PCP — Speed Metric

* SingletonMetric

=1 « This type defines a metric with no instance domain and only one
value. It requires type, semantics and unit for construction, and
optionally takes a couple of description strings.
= A simple construction
;f: metric, err := speed.NewPCPSingletonMetric(
42, // initial value
Ei[ "simple.counter”, // name
= speed.Int32Type, // type
f = speed.CounterSemantics, // semantics
i speed.OneUnit, // unit
* "A Simple Metric", // short description
" "This is a simple counter metric to demonstrate the speed API", // long desc
&l )
\-

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.






= PCP for Containers — Cgroup
-« Accounting

* = [subsys].stat files below /sys/fs/cgroup

* individual cgroup or summed over children

* blkio

* |OPs/bytes, service/wait time — aggregate/per-dev

=1 . Split up by read/write, sync/async
@1 * cpuacct

IDBRCLLUN
| JOCTCTTONTTW JCTTRCTOIAR

* Processor use per-cgroup - aggregate/per-CPU
°* memory

 mapped anon pages, page cache, writeback, swap, active/inactive LRU

_\_.lﬁ state

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.



s
|

B 1 R aennnnnann fanain o
/ ] T | > | 12

118y |

PCP for Containers —
= Namespaces

_{ « Example: cat/proc/net/dev
" « Contents differ inside vs outside a container
Y2 - Processes (e.g. cat) in containers run in different network, ipc, process,

uts, mount namespaces

« Namespaces are inherited across fork/clone
* Processes within a container share common view

‘1 L ||I|||% | s [ || =
LB = P LA B Wlalalal

_fa
o

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.



PCP Container Analysis — Goals

S

* Allow targeting of individual containers

* e.g. /proc/net/dev

* pminfo --fetch network

VS

 pminfo —fetch —container=crank network
Zero Installation inside containers required
« Simplify your life (dev_t auto-mapping)

« Data reduction (proc.*, cgroup.*)

(] 18

]

Al

L _ - Tp— VA LnnONO I AT
== 3 o —— s ; ; A 1 o St e
4 1 | = =10 N /AN 1P T
|||| II = — e e - bl el o gl WPy MDY LSS NI
2 — N J \ P3|
e | X AR E rnj 0 FL A (aeaannn ane ] 00n ann i,
s < T ol ||1.u' ,..1 at” 2 J == S ¥ ¢ 1 b 4 |

_fa
o

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.



#4 PCP Container Analysis —
+ Mechanisms
=1  pminfo -f —host=acme.com —container=crank network
M8 - Wire protocol extension
= + Inform interested PCP collector agents
k * Resolving container names, mapping names to cgroups, PIDs, etc.
=| . setns(2)
@  Runs on the board, plenty of work remains
 New monitor tools with container awareness
__fa
A
O

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.



@ What is Metrics?
’l ® Code instrumentation
El ® Meters
® Gauges
[ ® Counters
® Histograms
®

Web app instrumentation
® Web app health check

- s, 2 )
T ; e~
| 1 iy
||| || Rl {4
1} — o IOk
< b : 1 i

]

__fa

A

4

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.



DN 111} [y

Metrics Reporters

P
ST

LT}
ol T O NI

® Reporters
® Console
® CSsvV
[‘: ® Sif4
* JMX
] ® Advanced reporters
= ® Graphite
® Ganglia

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.



aane ffame
T 1

Metrics 3rd Party Libraries

AspectJ
® InfluxDB

® StatsD
| [‘: ® Cassandra

= Spring

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.



| ”:;l:

‘ n. | lh |

Metrics Basics

o . .
 MetricsRegistry
_1 * A collection of all the metrics for your application
s « Usually one instance per JVM
- « Use more in multi WAR deployment
E < Names
L=  Each metric has a unigue name
* Registry has helper methods for creating names
|
Eg;. MetricRegistry.name(Queue.class, "items", "total")
f //com.example.queue.items.total
U MetricRegistry.name(Queue.class, "size", "byte")
//com.example.queue.size.byte
L\
5
\-

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.



T

i jlill

m
=~ ° Gauges
_1  The simplest metric type: it just returns a value
&Eé final Map<String, String> keys = new HashMap<>();
= registry.register(MetricRegistry.name("gauge", "keys"), new
= Gauge<Integer>() {
Eii @Override
, public Integer getValue() {
= return keys.keySet().size();
f }
' )
\ O\
G|
A

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.



| ”:;l:

Metrics Elements (2)

 Counters
* Incrementing and decrementing 64.bit integer

-. .,ﬁ‘
e ol —_ L ATy
R A A [ R~

N | T e

e e B e f b

final Counter counter= registry.counter(MetricRegistry.name("counter",
"inserted"));
counter.inc();

N
| Fni
i ."‘ 4

i, 2
L 1 — =il

lIl.‘.l.A{

I
Tl 470l

_fa
o

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.



il

‘ l".‘ i l; |

Metrics Elements (3)

iTsnnnnO OO gq

i .
 Histograms
_1 « Measures the distribution of values in a stream of data
ﬁfi; final Histogram resultCounts = registry.histogram(name(ProductDAO.class,
= "result-counts");
(o resultCounts.update(results.size());
' e Meters
« Measures the rate at which a set of events occur
— final Meter meter = registry.meter(MetricRegistry.name("meter", "inserted"));
meter.mark();
|\
%5
\-

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.



T

i jlill

™ .
* Timers
_1 * A histogram of the duration of a type of event and a meter of the rate
e of its occurrence
;Eéé Timer timer = registry.timer(MetricRegistry.name("timer", "inserted"));
= Context context = timer.time();
= //timed ops
Eii context.stop();
L\
__a
\-

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.



T
1!

B R aennnnn ann flama it
[, ] T | > ! v

118y "|

Metrics — Graphite Reporter

final Graphite graphite = new Graphite(new

i InetSocketAddress("graphite.example.com", 2003));
fé{ final GraphiteReporter reporter = GraphiteReporter.forRegistry(registry)
VRS .prefixedWith("webl.example.com")
= .convertRatesTo(TimeUnit.SECONDS)
#EE| . convertDurationsTo(TimeUnit.MILLISECONDS)
e .filter(MetricFilter.ALL)
= .build(graphite);
Eii reporter.start(l, TimeUnit.MINUTES);
=l Metrics can be prefixed
pm  Useful to divide environment metrics: prod, test

2
[l

\_‘"

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.




Metrics — Grafana Application
Overview

BMSL documents per minute © last 1m timeshift-1m BMSL duplicate documents minute rate

BMSL publish rate per minute BMSL duplicate rate per minute

BMSL Input © last 24h BMSL classification rate per minute

/10 04:00 4/10 06:00

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.



- - - . ICROPROFILE.
What is Eclipse MicroProfile? <« "

e Eclipse MicroProfile Is an open-source community
specification for Enterprise Java microservices

e A community of individuals, organizations, and vendors
collaborating within an open source (Eclipse) project to
bring microservices to the Enterprise Java community

HTTPS://MICROPROFILE.IO/ HTTPS://PROJECTS.ECLIPSE.ORG/PROJECTS/TECHNOLOGY.MICROPROFILE



- . ICROPROFILE
Specifications 1.2 : :

Health
Check 1.0

Fault JWT
Config 1.1 Tolerance Propagation
1.0 1.0

Metrics 1.0

CDI 1.2 JSON-P 1.0 § JAX-RS 2.0

MicroProfile1.2 777

- = NeW
@ = No change from last release






e o B
vl DI N s
LT

o g ke Y

“ll' BT

What is Prometheus?

TR T R P -
[ JOCTLTTONTOW ROTTRCTTIAM

Prometheus is an open-source systems monitoring
and alerting toolkit originally

built at SoundCloud. It is now a standalone open
source project and maintained

independently of any company.

N v~ i
o~ .
B : .

|2

et o

1§
1 III
anle

[l
"

AT T ——
ol 2
:' P J :’l
e - 1= | LR

1

—

.I‘

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.



i T
O JCCONCTTYH

4= Prometheus Components

’I  The main Prometheus server which scrapes and stores time series data
E{ « Client libraries for instrumenting application code

"3 - A push gateway for supporting short-lived jobs

&1 » Special-purpose exporters (for HAProxy, StatsD, Graphite, etc.)

&=+ An alertmanager

)=l . Various support tools

 WhiteBox Monitoring instead of probing (aka BlackBox Monitoring)

_ta
o

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.



ORI T

A1 =] 1
2 j s = —{14
i = s
0 enannn ann (e iy
T — [ Y ¢ 1 4 L A%

What is StatsD?

A network daemon that runs on the Node.js platform
={ and listens for statistics, like counters and timers, sent
7y over UDP or TCP and sends aggregates to one or more
pluggable backend services (e.g., Graphite).
i
q
. StatsD was inspired (heavily) by the project (of the
same name) at Flickr.
__fa
A
O

#Monitoring #Performance

© 2017 Creative Arts & Technologies and others. All rights reserved.



\
C

#Monitoring #Performance Images: Nu Image / Millennium Films © 2016 Creative Arts & Technologies and others. All rights reserved.



‘l&

.l~:.;." T . I 1 ¥ Yol
o N A e & _ - U IANnONN I BTy
4 1l ‘ ) i ) Xz 7/ \§ 0 | E—— NEap=
|||| || = :‘—‘-_, — = e — bl U e =88 T R e IR DN JLLLLUIS g
— D00 S == e = M g (= T
1| Bl =1L W Wl L., Py ST | | i | R & I o 0 [annannn ann (a0 am]iy

Links

Performance Co-Pilot
http://www.pcp.io
Dropwizard Metrics
http://metrics.dropwizard.io
Eclipse MicroProfile
http://microprofile.io
Prometheus
http://prometheus.io
StatsD

https://github.com/etsy/statsd/wiki

_fa
o

#Monitoring #Performance © 2017 Creative Arts & Technologies and others. All rights reserved.


http://www.pcp.io/
http://metrics.dropwizard.io/
http://microprofile.io/
http://microprofile.io/
https://github.com/etsy/statsd/wiki

ST

AL

#Monitoring #Performance

© 2016 Creative Arts & Technologies and others. All rights reserved.



