
Explaining Value Interpolation
with PCP Archives

Ken McDonell
kenj@ kenj.id.au

Version 1.2
Dec 2023

As part of the Performance Co-Pilot (PCP) historical records of performance data are maintained as
time-series of observations in a PCP archive. In the first instance these archives are created by
pmlogger(1).

This document aims to explain how, when a PCP archive is replayed, values are instantiated for a metric
when fetched at an arbitrary point of time within the archive.

Background
The PCP architecture offers a number of differentiators compared to other performance data collection
infrastructures, namely:

1. Real-time sources and historical sources (PCP archives) are largely interchangeable, meaning
the same reporting, display, alerting and analysis tools can be used for both real-time monitoring
and historical analysis.

2. In addition to the data values associated with a performance metric, there is metadata that
describes the syntax and semantics of each performance metric. This metadata can be queried
from real-time sources and is stored in the PCP archives.

3. A metric may have a singular value, e.g. proc.nproc (the number of running processes) or may
have a set-value, e.g. proc.psinfo.utime (the user-mode CPU time for every running process).
Where a metric is set-valued, the associated set of instances at any point in time is defined by a
metric’s instance domain. Multiple metrics may share the same instance domain. Instance
domains can be queried from real-time sources and are stored as a time-series in the PCP
archives.

4. Groups of metrics in PCP archives may have different logging intervals. Some, like hardware
configuration, may be logged once. Others that are subject to slow change may be logged
infrequently, e.g. the 15-minute load average. And others may require more frequent logging,
e.g. disk or network activity.

5. PCP archives can be sliced-diced-and-merged to create a new archive with subsets of the
metrics, parts of the time series, concatenation of time series, changes in the sampling interval,
etc.

6. When replaying performance data from a PCP archive, a monitoring application will typically want
values for a number of metrics, at a specific sampling interval (and possibly a starting time), so
the “time” for each sample of the replay is not correlated with the “time” for observations recorded

mailto:kenj@kenj.id.au
mailto:kenj@kenj.id.au

Explaining Value Interpolation with PCP Archives Version 1.2

in the PCP archive.

In the remainder of this document we shall largely disregard set-valued metrics and instance domains.
All of the principles and logic that is outlined below relating to value interpolation from PCP archives for a
singular metric may be applied to the value for each instance of a set-valued metric.

Metadata and Data Semantics
The PCP metadata describes each metric and includes:

• unique metric identifier (pmID)
• data type (integers of various types and sizes, floats, doubles, strings, etc.)
• data semantics (counter, instantaneous, discrete)
• data scale (dimension and scale for time x space x count)
• instance domain identification (pmInDom)
• help text
• labels

The -d (core metadata), -l (metric labels), -t (one line help text) and -T (verbose help text) options to
pminfo(1) will report the metadata for one or more metrics.

When instantiating values for a metric from an archive it is the data semantics that is most important.

Counter Semantics
Metrics with COUNTER semantics have values that are monotonic increasing over time. By definition
they have a numeric type. These metrics are typically reset to zero at boot time, process creation or
service startup, and thereafter are free running.

Examples: disk.dev.read_bytes (number of Kbytes read for each disk device), swap.pagesout (number
of pages written to the swap device), proc.psinfo.stime (msec of system CPU time for each process).

It is important to note that most applications that consume PCP data will convert metrics with COUNTER
semantics into rates by sampling the metric twice then dividing the difference in value by the difference
in time. So disk.dev.read_bytes will be reported as Kbytes/sec, swap.pagesout will be reported as
count/sec and proc.psinfo.stime will be reported as msec/msec (or utilization of one CPU).

Instantaneous Semantics
Metrics with INSTANTANEOUS semantics have values that may increase, or decrease, or not change,
between one observation and the next.

Examples: disk.dev.util (percentage of time each disk was busy processing requests), swap.used (total
swap used in units of bytes), proc.psinfo.cgroups (text string encoding the list of process cgroups for
each process).

Discrete Semantics
Similar to INSTANTANEOUS semantics, DISCRETE semantics are those that are unlikely to change
from one observation to the next. Most metrics with DISCRETE semantics have values that report
system sizes or configuration parameters.

Examples: disk.partitions.capacity (size of each disk partition, in units of Kbytes), pmcd.timezone
(timezone for the pmcd(1) process), hinv.physmem (installed RAM, in units of Mbytes),
proc.psinfo.start_time (start time for each process relative to system boot time, in units of msec).

Interpolation Algorithms
For some random singular metric we shall use the notation xa(t) to mean the value that is stored in the
PCP archive at some sample time t, and xf(t) to mean the value that is returned from pmFetch(3) at

– 2 –

Explaining Value Interpolation with PCP Archives Version 1.2

some arbitrary time t when the archive is replayed.

Counter Semantics
The value for a metric with COUNTER semantics at an arbitrary time t is:

• If there is some xa(tl) for a largest tl ≤ t, then this is the prior bound.

• If there is some xa(tu) for a smallest tu ≥ t, then this is the next bound.

• If both the prior bound and the next bound exist, then xf(t) is computed by linear interpolation, i.e.
xf(t) = xa(tl) + (t-tl) * (xa(tu) – xa(tl)) / (tu – tl), otherwise no value exists1 for xf(t).

The bounds may not exist for the following reasons:

• For all times before the first observation of a metric in the archive, there is no prior bound.

• For all times after the last observation of a metric in the archive, there is no next bound.

• Discontinuities in a PCP archive are indicated by a <mark> record; this can occur when a system
is reboot, or archive logging is suspended for a time, or archives from disjoint time periods are
combined with pmlogextract(1). The <mark> record has a timestamp. As shown in the diagram
below, there is no next bound in the region A (after tk and up to tk+1). Similarly there is no prior
bound in the region B (from tk+1 up to tk+2). So no values are available across both regions A and
B.

Instantaneous Semantics
There is no way to determine exact values between observations of a metric with INSTANTANEOUS
semantics, but provided the time between the observations is small (in comparison to the likely rate of
change of the value), then the “last” observed value is a reasonable approximation.

This corresponds with the semantics associated with sar(1) or vmstat(1) when monitoring free memory
for example.

The value for a metric with INSTANTANEOUS semantics at an arbitrary time t is:

• If there is some xa(tl) for a largest tl ≤ t, then this is the prior bound.

• If there is some xa(tu) for a smallest tu ≥ t, then this is the next bound.

• If both the prior bound and the next bound exist, then xf(t) is computed by extrapolation, i.e. xf(t)
= xa(tl), otherwise no value exists for xf(t).

The conditions for the bounds not existing are identical to those described for a metric with COUNTER
semantics.

Discrete Semantics
This is the same as the INSTANTANEOUS case, except the next bound requirement is removed.

1 The PCP protocols support encoding “No value is available” for a particular metric at a particular time in the
result returned from pmFetch(3).

– 3 –

value
xa(tk)

Time

tk

value
xa(tk+2)

tk+2

<mark>
tk+1

A
B

Explaining Value Interpolation with PCP Archives Version 1.2

The value for a metric with DISCRETE semantics at an arbitrary time t is:

• If there is some xa(tl) for a largest tl ≤ t, then this is the prior bound.

• If the prior bound exists, then xf(t) is computed by extrapolation, i.e. xf(t) = xa(tl), otherwise no
value exists for xf(t).

Annotated Examples
We shall consider some very simple examples, with the following constraints.

• We show only singular metrics, e.g. disk.total.read. For the more general set-valued metrics
(those with an Instance Domain in PCP terminology), the same algorithms and calculations are
made independently for every instance of the metric. Alternatively, consider x(t) to be the value
of a single metric-instance pair at time t, e.g. the value for the “sda” instance of the metric
disk.dev.read.

• The values in the archive are shown at regular times. In practice, different metrics are logged at
different intervals, while the effects of the configurations used with pmlogger(1) to create an
archive and run-time reconfiguration with pmlc(1) followed by archive slice-n-dice operations with
pmlogmerge(1) or pmlogextract(1) all mean that the sampling interval for a single value is not
constant over an archive.

• The archive timestamps (t) have been converted into seconds relative to the start of the archive,
and t is in the range 0 to 99.

• There are no discontinuities or <mark> records as discussed above.

These constraints limit the complexity of the examples in the hope that the base concepts will be more
easily understood.

Counter Semantics
Consider the following values for a singular metric (x) with COUNTER semantics as recorded in a PCP
archive over time. As described above, we will use the notation xa(t) to mean the value of x stored in the
archive at time t.

Now this archive is to be replayed to report the values of x that are returned by pmFetch(3) at time t,

– 4 –

Time (t) 10 20 30 40 50 60 70 80 90
Archive Value xa(t) 610 720 1020 1020 1020 1050 1100 1200 1210

0 10 20 30 40 50 60 70 80 90 100
500
600
700
800
900

1000
1100
1200
1300

Archive Value xa(t)

Time (t)

Explaining Value Interpolation with PCP Archives Version 1.2

designated xf(t). If the interval between fetches was 25 and we start at the beginning of the archive, then
the values would be as shown in red on the graph below, computed by linear interpolation between the
recorded data values (shown in blue) immediately before and after the requested times. So xf(25) =
870, xf(50) = 1020 (requested time equals a recorded time, so use that value) and xf(75) = 1150.

In the example above, the replay interval (25) is larger than the logging interval (10). But the opposite
may apply, so in the example below the replay interval (3) is less than the logging interval (10).

In both cases, note that there are no values for xf(t) when t < 10 because there is no prior bound.
Similarly there are no values for xf(t) when t > 90 because there is no next bound.

– 5 –

Time (t) 10 20 25 30 40 50 60 70 75 80 90
Archive Value xa(t) 610 720 1020 1020 1020 1050 1100 1200 1210
Fetch Value xf(t) 870 1020 1150

0 10 20 30 40 50 60 70 80 90 100
500
600
700
800
900

1000
1100
1200
1300

Fetch Value xf(t) Archive Value xa(t)

Time (t)

0 10 20 30 40 50 60 70 80 90 100
500

600

700

800

900

1000

1100

1200

1300

Fetch Value xf(t) Archive Value xa(t)

Time (t)

Explaining Value Interpolation with PCP Archives Version 1.2

Instantaneous Semantics
Consider the following values for a singular metric (x) with INSTANTANEOUS semantics as recorded in
a PCP archive over time. As described above, we will use the notation xa(t) to mean the value of x
stored in the archive at time t.

Now this archive is to be replayed to report the values of x that are returned by pmFetch(3) at time t,
designated xf(t). If the interval between fetches was 15 and we start at the beginning of the archive, then
the values would be as shown in red on the graph below.

Discrete Semantics
Using the same data as in the previous example, but changing the semantics to DISCRETE and
changing the interval between fetches to 4, would produce the results shown below.

Note that in this case the values are returned for the times t > 90, where no next bound exists.

– 6 –

Time (t) 10 20 30 40 50 60 70 80 90
Archive Value xa(t) 400 880 650 1120 1120 940 580 1200 850

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

Archive Value xa(t)

Time (t)

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

Fetch Value xf(t) Archive Value xa(t)

Time (t)

Explaining Value Interpolation with PCP Archives Version 1.2

Issues Adding Extra Complexity
Set-valued metrics are more complicated because:

• not all instances are necessarily logged at the same time in the archive
• some instances may appear and others may disappear during the period spanned by the archive
• the client may request only a subset of the instances in a particular pmFetch(3)

Replay may proceed in either a forwards or a backwards direction, and the direction can be changed by
the monitoring application.

Replay may commence an arbitrary point within the time period spanned by the archive.

Multiple <mark> records may be present in a single archive.

Metrics with COUNTER semantics may be reset (hardware disabled and re-enabled, or some service
stopped and re-started) or overflow or risk arithmetic overflow in the interpolation calculation.

When all these possible cases are combined, the process of establishing the next and prior bounds for a
specific metric-instance value may involve scanning the entire archive both forwards and backwards.

The cost of these scanning operations is mitigated by the following techniques:

• the temporal index associated with each archive provides accelerated access to the region of the
archive spanning a specific time

• in-memory caches are used to keep recently scanned archive records, this reduces file reading
and possibly block-level decompression

• all metadata from the archive is cached in-memory

• the implementation tries very hard to gather as much state as possible during each of these
scans to minimize the cost of subsequent scans, possibly for different metrics

Fortunately, for most metrics and most archives, the most common value instantiation avoids the
complex corner cases and follows the algorithms described above with simple incremental reading of the
archive as replay progresses.

– 7 –

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

Fetch Value xf(t) Archive Value xa(t)

Time (t)

Explaining Value Interpolation with PCP Archives Version 1.2

May the Source be With You
The definitive truth about value instantiation is in the libpcp source code, specifically in the C source that
may be inspected at https://github.com/performancecopilot/pcp/blob/main/src/libpcp/src/interp.c

Good luck!

– 8 –

https://github.com/performancecopilot/pcp/blob/main/src/libpcp/src/interp.c

	Background
	Metadata and Data Semantics
	Counter Semantics
	Instantaneous Semantics
	Discrete Semantics

	Interpolation Algorithms
	Counter Semantics
	Instantaneous Semantics
	Discrete Semantics

	Annotated Examples
	Counter Semantics
	Instantaneous Semantics
	Discrete Semantics

	Issues Adding Extra Complexity
	May the Source be With You

