
PCP: Ingest and Export
pcp-conf2018 Mark Goodwin

 mgoodwin@redhat.com
@goodwinos

mailto:mgoodwin@redhat.com

PCP Ingest / Export

Archive
Logs

PMCD
libpcp

ExportIngest
Standard Agents

Specialized agents:
● MMV
● BCC
● Trace
● Prometheus
● .. many others

LOGIMPORT(3)
Ingest tools: xxx2pcp

pmlogger

CLI tools, scripts

Exporters:
pcp2xxx, pmwebd

Clients: pmrep,
pmchart, pmie etc

Tools, log rotation,
merge, extract etc

PCP Ingest: Standard PMDAs

Archive
Logs

PMCD
libpcp

ExportIngest
Standard Agents

Specialized agents:
● MMV
● BCC
● Trace
● Prometheus
● .. many others

LOGIMPORT(3)
Ingest tools: xxx2pcp

pmlogger

CLI tools, scripts

Exporters:
pcp2xxx, pmwebd

Clients: pmrep,
pmchart, pmie etc

Tools, log rotation,
merge, extract etc

PCP Standard PMDAs (Agents)

● ~ 75 plugins / agents (PMDAs)
○ .. more being added every release
○ Managed by the PCP pmcd service.
○ DSOs and daemons. Lots of IPC options

● Ingest data into PCP metrics
○ Canonical, uniform name space
○ strongly typed metadata and values
○ Low overheads: “Pull” model: service to completion:

client request -> pmcd -> agent -> pmcd -> client

● Extensible API
○ libpcp_pmda has C/C++, Python and Perl bindings

● Separately Packaged: pcp-pmda-foo
○ Isolate exotic dependencies
○ Not all installed by default.

● linux - kernel metrics. CPU, Disk, Network,
Memory, Filesystem, etc. everything
exported by /proc, /sys and most other
kernel interfaces

● proc - per-process metrics
● XFS - XFS filesystem specific metrics
● nfsclient - NFS client stats
● mmv - memory mapped instrumentation
● dm - device mapper and LVM
● jbd2 - journal block device
● lio - Linux I/O - iSCSI, FCP, FCoE
● pmcd - PCP statistics
● root - container, privileged PMDAs, etc
● apache - web server stats
● BCC - Extended Berkley Packet Filter

metrics
● docker - container management stats
● KVM - libvirt
● mysql and postgresql - database stats
● prometheus - end-points
● redis - system stats for redis daemons
● samba - filesystem
● smart - disk health
● vmware - platform stats
● … many more.

PCP Ingest: LOGIMPORT API and xxx2pcp

Archive
Logs

PMCD
libpcp

ExportIngest
Standard Agents

Specialized agents:
● MMV
● BCC
● Trace
● Prometheus

LOGIMPORT(3)
Ingest tools: xxx2pcp

pmlogger

CLI tools, scripts

Exporters:
pcp2xxx, pmwebd

Clients: pmrep,
pmchart, pmie etc

Tools, log rotation,
merge, extract etc

LOGIMPORT(3) - library to write PCP archives
● libpcp_import API for writing PCP archive logs directly

○ Provides a simple programmatic ingest interface to write PCP archives
○ By-passes normal PMDA->PMCD->pmlogger->archive data flow

● C/C++, Perl and Python bindings, with many examples
● Resulting PCP archives can be replayed/exported by any PCP tools

○ Exactly the same as standard pmlogger(1) archives

● logimport(3) is the API library behind many xxx2pcp ingest tools:
○ collectl2pcp(1)
○ ganglia2pcp(1)
○ iostat2pcp(1)
○ sar2pcp(1)
○ sheet2pcp(1)
○ mrtg2pcp(1)
○ pmrep(1) to write PCP archives, e.g. pmrep -o archive -F outputarchive

PCP Ingest “ Specialized PMDAs

Archive
Logs

PMCD
libpcp

ExportIngest
Standard Agents

Specialized agents:
● MMV
● BCC
● Trace
● Prometheus
● .. many others

LOGIMPORT(3)
Ingest tools: xxx2pcp

pmlogger

CLI tools, scripts

Exporters:
pcp2xxx, pmwebd

Clients: pmrep,
pmchart, pmie etc

Tools, log rotation,
merge, extract etc

Specialized agents: instrumentation and tracing
● mmv PMDA - memory mapped values PMDA and API

○ Simple API documented in pmdammv(1), mmv(5) and mmv_stats_init(3)
○ Application and pmdammv use a shm segment

■ Suitable for very low latency instrumentation
○ Creates dynamic metrics

● trace PMDA - event counting / tracing PMDA and API
○ Multiple language bindings (even Fortran!)
○ pmtrace(1) can be used to instrument scripts
○ Use pmdatrace(3) API to instrument applications
○ Fixed namespace. trace.* metrics. Metric instances are trace points

● BCC PMDA - Extended BPF (Berkeley Packet Filter) PMDA
○ See pmdabcc(1) - stats from compiled eBPF programs loaded as kernel modules
○ Very efficient, secure and powerful, e.g. disk device i/o latency histograms
○ Extensible via ini format config file - best way to monitor kernel trace points, etc
○ Creates dynamic metrics
○ Requires pcp-4.1.0 and fairly new kernel. See bpf(2),

Specialized agents (cont.): PMDA Prometheus
● PCP PMDA to ingest prometheus end-point data

○ See pmdaprometheus(1)
○ Dynamically extensible via config files in /var/log/pcp/pmdas/prometheus/config.d

■ Each config file either contains a URL, or is an executable script.
● Both URLs and scripts should return prometheus formatted metric data
● file:// URLs are supported for ingesting local files.

■ Prometheus end-point metric data is simple text strings, documented at
https://prometheus.io/docs/instrumenting/exposition_formats

■ Simple example:

● PCP metric naming
○ The base name of each config file name is used as the second level of the resulting PCP

metric names, e.g. a config file named myserver.url results in metrics below
prometheus.myserver in the PCP name space.

○ Subdirectories in the config directory result in additional non-leaf namespace levels

HELP mymetric Simple gauge metric with three instances
Type mymetric gauge
mymetric {abc="0"} 456
mymetric {def="123"} 123
mymetric {hig="246",xyz="something"} 128

https://prometheus.io/docs/instrumenting/exposition_formats

PMDA Prometheus (cont.): meta-data
● PCP has strongly typed metrics and meta-data

○ Prometheus formatted metrics have no formal metadata
■ rely on loosely defined metric name hints and suffixes and the like
■ E.g. a prometheus metric name may have “_count” as a suffix to indicate it’s a counter.

○ All PCP metrics are strongly typed and have metadata
■ metric type, semantics, units and help text, see PMLOOKUPDESC(3)

○ The PCP Prometheus PMDA uses heuristics and tags to fill this in, e.g.

● Labels in the prometheus metric (e.g. “interval”) are used as the instance name in the resulting
PCP metric data. E.g. the PCP metric prometheus.myhost.loadavg would have three instances.

HELP loadavg local load average
Type loadavg gauge
loadavg {interval="1-minute"} 0.12
loadavg {interval="5-minute"} 0.27
loadavg {interval="15-minute"} 0.54

PMDA Prometheus (cont.): scripted configs
● Scripted configs

○ provide a simple yet powerful way to ingest metric data. E.g. given /proc/loadavg

● As an example, create an executable script in a file named
/var/lib/pcp/pmdas/prometheus/config.d/myserver

● Results in a PCP metric named prometheus.myserver.loadavg with three instances.
○ This is created dynamically - no restarts necessary

$ cat /proc/loadavg
0.18 0.31 0.40 1/1253 17801

#! /bin/sh
 awk '{
 print("# HELP loadavg local load average")
 print("# Type loadavg gauge")
 printf("loadavg {interval=\"1-minute\"} %.2f\n", $1)
 printf("loadavg {interval=\"5-minute\"} %.2f\n", $2)
 printf("loadavg {interval=\"15-minute\"} %.2f\n", $3)
 }' /proc/loadavg

PMDA Prometheus (cont.): URL configs
● Prometheus end-point URLs

○ Perf data exported as a URL on a port in the range 9100 - 10000 below /metrics e.g.
http://somehost:9100/metrics is the prometheus “node exporter” for a host named somehost.

○ There are a huge number of prometheus exporters, PCP can ingest them all
■ See https://github.com/prometheus/prometheus/wiki/Default-port-allocations

● URL config files
○ First line in the config file is an end-point URL (as above), with .url suffix
○ PCP metrics are dynamically created - metrics are named same way as scripted configs.
○ No need for PMDA restarts or anything - completely dynamic
○ URL configs also support HEADER and FILTER syntax in subsequent lines in the config file

■ HEADER lines specify http request headers to include in the GET request
● E.g. for authentication, content-type, proxy redirects, etc.

■ FILTER lines allow metrics and/or labels in the response be included/excluded
● E.g. to exclude unwanted prometheus labels from the PCP instance domains
● E.g. Ignore uninteresting metrics in the response, etc

http://somehost:9100/metrics
https://github.com/prometheus/prometheus/wiki/Default-port-allocations

PMDA Prometheus (cont).): Scalability
● Simple benchmark measuring wall

clock fetch times
○ 1 to 500 URLs, with 1 to 10 metrics per

URL
○ localhost http requests returning

constant data (script generated)

● Scalability
○ Fairly linear scalability for #URLs with

only a few metrics/URL
○ Non-linear for higher #metrics

● Mostly resolved by using parallel threads for
HTTP GET requests, but serialized response
parsing (FIFO queue) - avoids the “Big
Python Interpreter Lock”

Image courtesy
Frank Ch. Eigler
fche@redhat.com

Future:
Redis Cluster

Redis
Cluster

pmseries Grafana

Web APP

...

pmseries

Redis
ClusterRedis

Cluster

...

