PCP: Ingest and Export

pcp-conf2018 Mark Goodwin

mgoodwin@redhat.com
@goodwinos

mailto:mgoodwin@redhat.com

Ingest

Standard Agents

Specialized agents:
e MMV

BCC

Trace

Prometheus

([]
[J
[J
e .. many others

LOGIMPORT(3)

Ingest tools: xxx2pcp

PCP Ingest / Export

—

PMCD

libpcp

AT
N
Archive

Logs
~~

Export

CLI tools, scripts

f

I:> Exporters:

pcp2xxx, pmwebd

Clients: pmrep,
pmchart, pmie etc

Tools, log rotation,
\ merge, extract etc

< pmlogger

Ingest

Standard Agents

Specialized agents:
e MMV

BCC

Trace

Prometheus

([]
[J
[J
e .. many others

LOGIMPORT(3)

Ingest tools: xxx2pcp

PCP Ingest: Standard PMDAs

—

PMCD

libpcp

N
N~
Archive

Logs
~

Export

CLI tools, scripts

f

I:> Exporters:

pcp2xxx, pmwebd

Clients: pmrep,
pmchart, pmie etc

Tools, log rotation,
\ merge, extract etc

—— pmlogger

PCP Standard PMDAs (Agents)

e ~ 75 plugins / agents (PMDAs)

o .. more being added every release

o Managed by the PCP pmcd service.

o DSOs and daemons. Lots of IPC options
e Ingest data into PCP metrics

o Canonical, uniform name space

o strongly typed metadata and values

o Low overheads: “Pull” model: service to completion:

client request -> pmcd -> agent -> pmcd -> client
e Extensible API
o libpcp_pmda has C/C++, Python and Perl bindings
e Separately Packaged: pcp-pmda-foo

o Isolate exotic dependencies
o Not all installed by default.

linux - kernel metrics. CPU, Disk, Network,
Memory, Filesystem, etc. everything
exported by /proc, /sys and most other
kernel interfaces

proc - per-process metrics

XFS - XFS filesystem specific metrics
nfsclient - NFS client stats

mmyv - memory mapped instrumentation
dm - device mapper and LVM

jbd2 - journal block device

lio - Linux I/0O - iSCSI, FCP, FCoE
pmcd - PCP statistics

root - container, privileged PMDAs, etc
apache - web server stats

BCC - Extended Berkley Packet Filter
metrics

docker - container management stats
KVM - libvirt

mysql and postgresql - database stats
prometheus - end-points

redis - system stats for redis daemons
samba - filesystem

smart - disk health

vmware - platform stats

... many more.

PCP Ingest: LOGIMPORT API and xxx2pcp

Ingest

Standard Agents

Specialized agents:
o MMV
e BCC
e Trace
e Prometheus

LOGIMPORT(3)

Ingest tools: xxx2pcp

PMCD

libpcp

—

N
N~
Archive

 —

Logs
~~

Export

CLI tools, scripts

Exporters:
pcp2xxx, pmwebd

Clients: pmrep,
pmchart, pmie etc

Tools, log rotation,

\ merge, extract etc

pmlogger

LOGIMPORT(3) - library to write PCP archives

libpcp_import API for writing PCP archive logs directly
o Provides a simple programmatic ingest interface to write PCP archives
o By-passes normal PMDA->PMCD->pmlogger->archive data flow

C/C++, Perl and Python bindings, with many examples
Resulting PCP archives can be replayed/exported by any PCP tools

o Exactly the same as standard pmlogger(1) archives

logimport(3) is the API library behind many xxx2pcp ingest tools:
collectl2pcp(1)

ganglia2pcp(1)

iostat2pcp(1)

sar2pcp(1)

sheet2pcp(1)

mrtg2pcp(1)

pmrep(1) to write PCP archives, e.g. pmrep -o archive -F outputarchive

o O O O O O o

PCP Ingest “ Specialized PMDAs

Ingest

Standard Agents

Specialized agents:

e MMV

e BCC

e Trace

e Prometheus

e .. many others

LOGIMPORT(3)

Ingest tools: xxx2pcp

—

PMCD

libpcp

N
N~
Archive

Logs
~

Export

CLI tools, scripts

f

— Exporters:

pcp2xxx, pmwebd

Clients: pmrep,
pmchart, pmie etc

Tools, log rotation,
\ merge, extract etc

—— pmlogger

Specialized agents: instrumentation and tracing
e mmyv PMDA - memory mapped values PMDA and API

o Simple APl documented in pmdammv(1), mmv(5) and mmv_stats_init(3)
o Application and pmdammyv use a shm segment

m Suitable for very low latency instrumentation
o Creates dynamic metrics

e trace PMDA - event counting / tracing PMDA and API
o Multiple language bindings (even Fortran!)
o pmtrace(1) can be used to instrument scripts
o Use pmdatrace(3) API to instrument applications
o Fixed namespace. trace.* metrics. Metric instances are trace points

e BCC PMDA - Extended BPF (Berkeley Packet Filter) PMDA

See pmdabcc(1) - stats from compiled eBPF programs loaded as kernel modules
Very efficient, secure and powerful, e.g. disk device i/o latency histograms
Extensible via ini format config file - best way to monitor kernel trace points, etc
Creates dynamic metrics

Requires pcp-4.1.0 and fairly new kernel. See bpf(2),

O O O O O

Specialized agents (cont.): PMDA Prometheus

e PCP PMDA to ingest prometheus end-point data
o See pmdaprometheus(1)
o Dynamically extensible via config files in /var/log/pcp/pmdas/prometheus/config.d
m Each config file either contains a URL, or is an executable script.
e Both URLs and scripts should return prometheus formatted metric data
e file:// URLs are supported for ingesting local files.
m Prometheus end-point metric data is simple text strings, documented at

https://prometheus.io/docs/instrumenting/exposition formats
m Simple example:

HELP mymetric Simple gauge metric with three instances
Type mymetric gauge

mymetric {abc="0"} 456

mymetric {def="123"} 123

. . mymetric {hig="246",xyz="something"} 128
e PCP metric naming

o The base name of each config file name is used as the second level of the resulting PCP
metric names, e.g. a config file named myserver.url results in metrics below
prometheus.myserver in the PCP name space.

o Subdirectories in the config directory result in additional non-leaf namespace levels

https://prometheus.io/docs/instrumenting/exposition_formats

PMDA Prometheus (cont.): meta-data

e PCP has strongly typed metrics and meta-data
o Prometheus formatted metrics have no formal metadata
m rely on loosely defined metric name hints and suffixes and the like
m E.g. a prometheus metric name may have “_count” as a suffix to indicate it's a counter.
o All PCP metrics are strongly typed and have metadata
m metric type, semantics, units and help text, see PMLOOKUPDESC(3)
o The PCP Prometheus PMDA uses heuristics and tags to fill this in, e.g.

HELP loadavg local load average

Type loadavg gauge

loadavg {interval="1-minute"} 0.12
loadavg {interval="5-minute"} 0.27
loadavg {interval="15-minute"} 0.54

e Labels in the prometheus metric (e.g. “interval”) are used as the instance name in the resulting
PCP metric data. E.g. the PCP metric prometheus.myhost.loadavg would have three instances.

PMDA Prometheus (cont.): scripted configs

e Scripted configs
o provide a simple yet powerful way to ingest metric data. E.g. given /proc/loadavg

$ cat /proc/loadavg
0.18 0.31 0.40 1/1253 17801

e As an example, create an executable script in a file named
/var/lib/pcp/pmdas/prometheus/config.d/myserver

#! /bin/sh

awk {
print("# HELP loadavg local load average")
print("# Type loadavg gauge")
printf("loadavg {interval=\"1-minute\"} %.2f\n", $1)
printf("loadavg {interval=\"5-minute\"} %.2f\n", $2)
printf("loadavg {interval=\"15-minute\"} %.2f\n", $3)

}' Iproc/loadavg

e Results in a PCP metric named prometheus .myserver. loadavg with three instances.
o This is created dynamically - no restarts necessary

PMDA Prometheus (cont.): URL configs

e Prometheus end-point URLs
o Perf data exported as a URL on a port in the range 9100 - 10000 below /metrics e.g.
http://somehost:9100/metrics is the prometheus “node exporter” for a host named somehost.
o There are a huge number of prometheus exporters, PCP can ingest them all
m See https://github.com/prometheus/prometheus/wiki/Default-port-allocations

e URL config files
o Firstline in the config file is an end-point URL (as above), with .url suffix
o PCP metrics are dynamically created - metrics are named same way as scripted configs.
o No need for PMDA restarts or anything - completely dynamic
o URL configs also support HEADER and FILTER syntax in subsequent lines in the config file
m HEADER lines specify http request headers to include in the GET request
e E.g. for authentication, content-type, proxy redirects, etc.
m FILTER lines allow metrics and/or labels in the response be included/excluded
e E.g. to exclude unwanted prometheus labels from the PCP instance domains
e E.g. Ignore uninteresting metrics in the response, etc

http://somehost:9100/metrics
https://github.com/prometheus/prometheus/wiki/Default-port-allocations

PMDA Prometheus (cont).): Scalability

Simple benchmark measuring wall

. - data 1= Semant'icImport["/home/fche/BENCH.out_seeurls_lemetr'ics.txt"]
clock fetch times R~
o 1 tO 500 URLS Wlth 1 tO 10 metrics per {ListPlot3p[{data[;; , {1, 2, 3}]}, AxesLabel {"s#urls", "smetrics", "seconds"},
’ PlotLegends » {"firstfetch"}, ColorFunction ->"LightTemperatureMap"],
URL ListPlot3D[{data[;; , {1, 2, 4}]}, AxesLabel - {"surls", "smetrics", "seconds"},
. PlotLegends - {"secondfetch"}, ColorFunction - "BlueGreenYellow"
o localhost http requests returning {) 1}
constant data (script generated) P,
Scalability T i
o Fairly linear scalability for #URLs with s~ 7]
only a few metrics/URL }
o Non-linear for higher #metrics . 4
Mostly resolved by using parallel threads for R ’f
20 |

HTTP GET requests, but serialized response
parsing (FIFO queue) - avoids the “Big
Python Interpreter Lock”

Image courtesy
Frank Ch. Eigler
fche@redhat.com

Future:

Ingest

Standard Agents

Specialized agents:
.

e BCC

o Trace

o Prometheus

e .. many others

LOGIMPORT(3)
Ingest tools: xxx2pcp

PMCD
libpcp

i

Y

—

— Archive P—

Logs

pmseries

Export
CLI tools, scripts

Exporters:
pcp2xxx, pmwebd

Clients: pmrep,
pmchart, pmie etc

Tools, log rotation,
merge, extract etc

pmlogger

Ingest

Standard Agents

Specialized agents:
.

BCC

Trace

Prometheus

.
.
L]
e .. many others

LOGIMPORT(3)
Ingest tools: xxx2pcp

Redis
Cluster

—>

PMCD
libpcp

i

Archive

&

Logs

<+

Export
CLI tools, scripts.

Exporters:
pcp2xxx, pmwebd

Clients: pmrep,
pmchart, pmie etc

Tools, log rotation,
merge, extract etc

pmlogger

Ingest

Standard Agents

Specialized agents:

.

e BCC

e Trace

e Prometheus

e .. many others

—

LOGIMPORT(3)
Ingest tools: xxx2pcp

pmseries

PMCD
libpcp

f

T
N
Archive

Logs
-

Export
CLI tools, scripts

Exporters:
pcp2xxx, pmwebd

Clients: pmrep,
pmchart, pmie etc

Tools, log rotation,
merge, extract etc

pmlogger

Grafana

Web APP

