Mate in two as black.

Mate in two as black.

Lukas Zapletal

Performance Co-Pilot and Ruby

Lessons learned integrating an app
without native PCP bindings

Me and the context

Me The context

Lukas Zapletal Foreman: software for server management:
Software Engineer, Red Hat

Red Hat Satellite 6 team provisioning (bare-metal)

VM or cloud management

hardware discovery

semi-automated provisioning
configuration mg. bootstrap and inventory
configuration mgmt. facts and reports
remote execution

content management (yum, puppet)
more features via plugins

Core The Foreman team member
Fedora community member

Owner of bare-metal provisioning,
logging, monitoring and SELinux

Interest in solving performance issues

Ruby on Rails application, 10 years of
existence, performance bugs from time to time.

www.theforeman.orqg

http://www.theforeman.org

Performance Co-Pilot

PCP is a different monitoring software.

Typical monitoring software

Nodes

Monitoring

Typical monitoring software

PCP is different

Nodes

Monitoring

Archive 1

Archive n

Open source framework...

... toolkit for monitoring and analyzing
live and historical system performance.

Key features of PCP

lightweight (PCP RPM about 4 MB)

distributed (local and remote monitoring)

included (all major Linux distributions, part of base RHEL/CentOS, BSD)
no external database needed (daily archive files)

metrics with type, unit and semantic (bytes/sec or kB/sec)

live and/or historical data

high-resolution (1 sec, in use by Netflix)

hotproc monitoring (details from hot/picked processes)

export to 3rd parties (Graphite, InfluxDB, ElasticSearch, Zabbix, Nagios)
extensive command-line toolkit for analysis

graphical tools and 3rd party dashboards available (QT GUI, TUI, web)
many agents available (100+ packages in Fedora named pcp-pmda®)
easily extensible with good documentation and man pages

stable with 20+ years of existence (open-sourced Dec 1999 by SGil)

Performance Co-Pilot - Architecture

PMDAs Consumers

Kemel pmchart

Webserver pmstat

pmlogger

DBMS

Network

Consumers J

PMDA Python example

import time

import cpmapi as c_api

from pcp.pmda import PMDA, pmdaMetric

from pcp.pmapi import pmUnits, pmContext as PCP

class TrivialPMDA (PMDA) :
def trivial fetch callback(self, cluster, item, inst):
if (cluster == 0 and item == 0):
return [int (time.time()), 1]
return [c _api.PM _ERR PMID, O]

def init (self, name, domain):
PMDA. init (self, name, domain)
self.connect pmcd()
self.add metric('trivial.time"',
pmdaMetric(self.pmid (0, 0),
c_api.PM TYPE U32, c api.PM INDOM NULL, c_api.PM SEM COUNTER,
pmUnits (0, 1, 0, 0, ¢ api.PM TIME SEC, 0)),
'time in seconds since 1 Jan 1970',
'The time in seconds since the epoch (lst of January, 1970).")
self.set fetch callback(self.trivial fetch callback)
self.set user (PCP.pmGetConfig('PCP_USER'))

if name == "' main ':
TrivialPMDA ('trivial', 250).run()

PCP - GUI

10:13:36 10:13:48 «M%

Dashboards shipping with PCP

yvum -y install pcp-webapi \
pcp-webapp-grafana \
pcp-webapp-vector

systemctl start pmwebd
systemctl enable pmwebd
firewall-cmd --add-port=44323/tcp

firewall-cmd --permanent --add-port=44323/tcp

PCP - Grafana (historical data)

~af Welcome to PCP+Grafana!

Zoom Out Jun 13, 2014 02:15:07 to Jun 13, 2014 07.51:54 =

all archives kernel.all.load.1 minute

03:00 04:00 06:00

all archives network.interface.*.bytes.*

300.0K
250.0K
200.0K
150.0K
100.0K

50.0K

0.0

© ADD A ROW

PCP - Vector (live data)

1800 / Ovector =\

[mnj l"L

€« - C ‘D localhost:8080/#/?host=ec2-54-159-49-252.compute-1.amazonaws.com

w8 ¥

Hostname = ec2-54-159-49-252.compute-l.amazonaws.com

@ eth0 out lo out 14

CPU Utilization x Per-CPU Utilization
@®sys user @cpuld cpul @cpu2 cpu3 @cpud
100% 100%
80% 80%
60% 60%
40% 40%
20% 20% ‘(/
0% 0%
08:48:00 08:49:10 08:49:59 08:48:00 08:48:20
Runnable x Load Average
@ Series -1 @ 1 minute + 5 minute
29.00 @ 15 minute
25.00 9.56
s 8.00
15.00 6.00
10.00 4.00
5.00 2.00
0.00 0.00
08:48:02 08:49:10 08:50:01 08:48:02 08:49:10 08:50:01
Network Packets x TCP Retransmits
@cth0in Cloin @ Series -1

Widget ~

@cpus @cpub @cpu?7 @cpu8 @cpud @cpuld0 @cpull @cpul2 cpul3 @cpuld cpu15

08:48:40 08:49:00

Network kB

@ethOin
@ eth0 out

@ close_wait
2902
2000
1000
08:49:59 08:48:00 08:49:10 08:49:58
x
@ application ~ free (cache) @ free (unused)

Window | 2min 5 Interval 2sec s

08:49:20 08:49:40 08:49:59

x TCP Connections x

@ established ~ time_wait

Demo time

You said Ruby?

Monitoring a Ruby app

Either Ruby or any language/runtime without native library/bindings.

APls available in PCP:

e \Writing an agent

(PMAPI, libpmda, C/C++, Python, Perl, Java)
e Instrument app

(MMV PMDA, MMV API, libmmv, C/C++, Python, Perl, Java, Go)
e Tracing points

(Trace PMDAJ/API, libtrace, C/C++, shell: pmtrace)

Trace APl way

Created a rubygem called pcptrace: https://rubygems.org/gems/pcptrace

yum -y 1nstall pcp-pmda-trace (@development-tools pcp-devel
cd /var/lib/pcp/pmdas/trace
./Install

gem 1install pcptrace

https://rubygems.org/gems/pcptrace

Trace APl way

#!/usr/bin/env ruby

require "pcptrace"

reached a point in source code

PCPTrace: :point ("a point")

observation of an arbitrary wvalue
PCPTrace: :0bs ("an observation", 130.513)

a counter - increasing or decreasing

PCPTrace: :counter ("a counter", 1)

time spent in a transaction (or block)
PCPTrace: :begin("a transaction")
#

PCPTrace::end("a transaction")

Trace APl way

Yay, another open-source software announced:

https://lukas.zapletalovi.com/2018/03/tracing-ruby-apps-with-pcp.html

Unfortunately PCP devs told me:

Aggregating is not flexible (fixed rolling window)
Not a good fit for multi-process environment
Trace APl is very slow

They are going to deprecate and remove it

https://lukas.zapletalovi.com/2018/03/tracing-ruby-apps-with-pcp.html

Monitoring a Ruby app

APls available in PCP:

e \Writing an agent

(PMAPI, libpmda, C/C++, Python, Perl, Java)
e |[nstrument app

(MMV PMDA, MMV API, libmmv, C/C++, Python, Perl, Java, Go)
o Fracingpoints

(Trace PMDAJ/API, libtrace, C/C++, shell: pmtrace)

MMV APl way

No wrapper needed, client code can write to shared memory directly (e.g. Golang
library called Speed).

An abandoned work-in-progress Ruby client library exists, but Ruby don't support
mapped memory (mmap gem is available tho).

Biggest concern is still multi-process environment.

Solution: statsd protocol and separate agent/daemon.

What is statsd

A de-facto standard - a text-based UDP protocol.

https://github.com/etsy/statsd

Three basic types: counter, duration, gauge.

Some extended types or extensions (set, string, labels).

api.session created:114|ms
cpu.temp:42.3|g

db.query.success:2|c
db.query.fail:1|c

https://github.com/etsy/statsd

MMV APl way

New project was born: pcp-mmyvstatsd: https://github.com/lzap/pcp-mmvstatsd

a daemon which

listens to UDP packets

uses golang Speed instrumenting library

takes advantage of HDR histogram aggregation
sends the data via MMV API to PCP

works great

how Foreman integrates with PCP today

https://github.com/lzap/pcp-mmvstatsd

MMV APl way

Yay, yet another open-source software announced:

https://theforeman.orq/2018/07/monitoring-and-telemetry-of-foreman-118.himl

Unfortunately PCP devs told me:

They don't like this design

MMV was meant for instrumenting and not agents

| should really use PMAPI and write a PMDA

Does not map labels properly and creates hundreds of metrics
Temporary solution

https://theforeman.org/2018/07/monitoring-and-telemetry-of-foreman-118.html

Monitoring a Ruby app

APls available in PCP:

e \Writing an agent

(PMAPI, libpmda, C/C++, Python, Perl, Java)
e Instrumentapp

(MMV PMDA, MMV API, libmmv, C/C++, Python, Perl, Java, Go)
o Fracingpoints

(Trace PMDAJ/API, libtrace, C/C++, shell: pmtrace)

PMAPI way

| am mentoring an ongoing diploma work at Palacky University in Olomouc to write
a proper PMDA:

PMDA statsd

multi-threaded high-performance design
pluggable parser support

pluggable aggregation

HDR histogram

written in C/C++

label mapping

configurable

PMDA for other unsupported languages
replacement for deprecated Trace API

Evolution is still better than revolution as you learn a lot along the way.

Q&A

This talk already available as
http://bit.ly/pcp-and-ruby

http://bit.ly/pcp-and-ruby

