
Mate in two as black.

Mate in two as black.

Lukáš Zapletal
Performance Co-Pilot and Ruby

Lessons learned integrating an app
without native PCP bindings

Me and the context

Me

Lukáš Zapletal
Software Engineer, Red Hat
Red Hat Satellite 6 team

Core The Foreman team member
Fedora community member

Owner of bare-metal provisioning,
logging, monitoring and SELinux

Interest in solving performance issues

The context

Foreman: software for server management:

● provisioning (bare-metal)
● VM or cloud management
● hardware discovery
● semi-automated provisioning
● configuration mg. bootstrap and inventory
● configuration mgmt. facts and reports
● remote execution
● content management (yum, puppet)
● more features via plugins

Ruby on Rails application, 10 years of
existence, performance bugs from time to time.

www.theforeman.org

http://www.theforeman.org

Performance Co-Pilot

PCP is a different monitoring software.

Typical monitoring software

Nodes Monitoring Database

Typical monitoring software

Nodes Monitoring Database

PCP is different

Nodes Monitoring
Archive 1

Archive n

Open source framework...

... toolkit for monitoring and analyzing
live and historical system performance.

Key features of PCP

● lightweight (PCP RPM about 4 MB)
● distributed (local and remote monitoring)
● included (all major Linux distributions, part of base RHEL/CentOS, BSD)
● no external database needed (daily archive files)
● metrics with type, unit and semantic (bytes/sec or kB/sec)
● live and/or historical data
● high-resolution (1 sec, in use by Netflix)
● hotproc monitoring (details from hot/picked processes)
● export to 3rd parties (Graphite, InfluxDB, ElasticSearch, Zabbix, Nagios)
● extensive command-line toolkit for analysis
● graphical tools and 3rd party dashboards available (QT GUI, TUI, web)
● many agents available (100+ packages in Fedora named pcp-pmda*)
● easily extensible with good documentation and man pages
● stable with 20+ years of existence (open-sourced Dec 1999 by SGI)

PMDA Python example

import time
import cpmapi as c_api
from pcp.pmda import PMDA, pmdaMetric
from pcp.pmapi import pmUnits, pmContext as PCP

class TrivialPMDA(PMDA):
 def trivial_fetch_callback(self, cluster, item, inst):
 if (cluster == 0 and item == 0):
 return [int(time.time()), 1]
 return [c_api.PM_ERR_PMID, 0]

 def __init__(self, name, domain):
 PMDA.__init__(self, name, domain)
 self.connect_pmcd()
 self.add_metric('trivial.time',
 pmdaMetric(self.pmid(0, 0),
 c_api.PM_TYPE_U32, c_api.PM_INDOM_NULL, c_api.PM_SEM_COUNTER,
 pmUnits(0, 1, 0, 0, c_api.PM_TIME_SEC, 0)),
 'time in seconds since 1 Jan 1970',
 'The time in seconds since the epoch (1st of January, 1970).')
 self.set_fetch_callback(self.trivial_fetch_callback)
 self.set_user(PCP.pmGetConfig('PCP_USER'))

if __name__ == '__main__':
 TrivialPMDA('trivial', 250).run()

PCP - GUI

Dashboards shipping with PCP

yum -y install pcp-webapi \
 pcp-webapp-grafana \
 pcp-webapp-vector

systemctl start pmwebd

systemctl enable pmwebd

firewall-cmd --add-port=44323/tcp

firewall-cmd --permanent --add-port=44323/tcp

PCP - Grafana (historical data)

PCP - Vector (live data)

Demo time

You said Ruby?

Monitoring a Ruby app

Either Ruby or any language/runtime without native library/bindings.

APIs available in PCP:

● Writing an agent
(PMAPI, libpmda, C/C++, Python, Perl, Java)

● Instrument app
(MMV PMDA, MMV API, libmmv, C/C++, Python, Perl, Java, Go)

● Tracing points
(Trace PMDA/API, libtrace, C/C++, shell: pmtrace)

Trace API way

Created a rubygem called pcptrace: https://rubygems.org/gems/pcptrace

yum -y install pcp-pmda-trace @development-tools pcp-devel
cd /var/lib/pcp/pmdas/trace
./Install
gem install pcptrace

https://rubygems.org/gems/pcptrace

Trace API way

#!/usr/bin/env ruby
require "pcptrace"

reached a point in source code
PCPTrace::point("a_point")

observation of an arbitrary value
PCPTrace::obs("an_observation", 130.513)

a counter - increasing or decreasing
PCPTrace::counter("a_counter", 1)

time spent in a transaction (or block)
PCPTrace::begin("a_transaction")
...
PCPTrace::end("a_transaction")

Trace API way

Yay, another open-source software announced:

https://lukas.zapletalovi.com/2018/03/tracing-ruby-apps-with-pcp.html

Unfortunately PCP devs told me:

● Aggregating is not flexible (fixed rolling window)
● Not a good fit for multi-process environment
● Trace API is very slow
● They are going to deprecate and remove it

https://lukas.zapletalovi.com/2018/03/tracing-ruby-apps-with-pcp.html

Monitoring a Ruby app

APIs available in PCP:

● Writing an agent
(PMAPI, libpmda, C/C++, Python, Perl, Java)

● Instrument app
(MMV PMDA, MMV API, libmmv, C/C++, Python, Perl, Java, Go)

● Tracing points
(Trace PMDA/API, libtrace, C/C++, shell: pmtrace)

MMV API way

No wrapper needed, client code can write to shared memory directly (e.g. Golang
library called Speed).

An abandoned work-in-progress Ruby client library exists, but Ruby don't support
mapped memory (mmap gem is available tho).

Biggest concern is still multi-process environment.

Solution: statsd protocol and separate agent/daemon.

What is statsd

A de-facto standard - a text-based UDP protocol.

https://github.com/etsy/statsd

Three basic types: counter, duration, gauge.

Some extended types or extensions (set, string, labels).

api.session_created:114|ms

cpu.temp:42.3|g

db.query.success:2|c
db.query.fail:1|c

https://github.com/etsy/statsd

MMV API way

New project was born: pcp-mmvstatsd: https://github.com/lzap/pcp-mmvstatsd

● a daemon which
● listens to UDP packets
● uses golang Speed instrumenting library
● takes advantage of HDR histogram aggregation
● sends the data via MMV API to PCP
● works great
● how Foreman integrates with PCP today

https://github.com/lzap/pcp-mmvstatsd

MMV API way

Yay, yet another open-source software announced:

https://theforeman.org/2018/07/monitoring-and-telemetry-of-foreman-118.html

Unfortunately PCP devs told me:

● They don't like this design
● MMV was meant for instrumenting and not agents
● I should really use PMAPI and write a PMDA
● Does not map labels properly and creates hundreds of metrics
● Temporary solution

https://theforeman.org/2018/07/monitoring-and-telemetry-of-foreman-118.html

Monitoring a Ruby app

APIs available in PCP:

● Writing an agent
(PMAPI, libpmda, C/C++, Python, Perl, Java)

● Instrument app
(MMV PMDA, MMV API, libmmv, C/C++, Python, Perl, Java, Go)

● Tracing points
(Trace PMDA/API, libtrace, C/C++, shell: pmtrace)

PMAPI way

I am mentoring an ongoing diploma work at Palacký University in Olomouc to write
a proper PMDA:

● PMDA statsd
● multi-threaded high-performance design
● pluggable parser support
● pluggable aggregation
● HDR histogram
● written in C/C++
● label mapping
● configurable
● PMDA for other unsupported languages
● replacement for deprecated Trace API

1
Evolution is still better than revolution as you learn a lot along the way.

Q&A
This talk already available as

http://bit.ly/pcp-and-ruby

http://bit.ly/pcp-and-ruby

