Next generation infrastructure and monitoring :
PCP meets Redis and Grafana

PCP-Conf2019 Mark Goodwin

mgoodwin@redhat.com
@goodwinos

mailto:mgoodwin@redhat.com

Agenda

PCP Logging infrastructure overview
Scaling Issues

PCP extensions, Redis and Grafana
Native PCP Grafana Data-source
Grafana + Demos

Work in progress, Q&A

Core PCP Logging Infrastructure

Import Export
Standard Agents / CLI tools, scripts
)
P M C D Exporters:
Specialized agents: |:> ||bpcp :> pcp2xxx, pmwebd
MMV
: BCC Clients: pmrep,
e Trace H pmchart, pmie etc
e Prometheus :
Tools, log rotation,
e .. many others N merge, extract etc
“Archive
rchive \
LOGIMPORT@) =3 | | goe ™ [<—— pmlogger
Ingest tools: xxx2pcp \/

Archive Log Rotation
and Management

PCP Standard PMDAs (Agents)

e ~ 75 plugins / agents (PMDAs)

o .. more being added every release

o Managed by the PCP pmcd service.

o DSOs and daemons. Lots of IPC options
e Ingest data into PCP metrics

o Canonical, uniform name space

o strongly typed metadata and values

o Low overheads: “Pull” model: service to completion:

client request -> pmcd -> agent -> pmcd -> client
e Extensible API
o libpcp_pmda has C/C++, Python and Perl bindings
e Separately Packaged: pcp-pmda-foo

o Isolate exotic dependencies
o Not all installed by default.

linux - kernel metrics. CPU, Disk, Network,
Memory, Filesystem, etc. everything
exported by /proc, /sys and most other
kernel interfaces

proc - per-process metrics

XFS - XFS filesystem specific metrics
nfsclient - NFS client stats

mmyv - memory mapped instrumentation
dm - device mapper and LVM

jbd2 - journal block device

lio - Linux I/0O - iSCSI, FCP, FCoE
pmcd - PCP statistics

root - container, privileged PMDAs, etc
apache - web server stats

BCC - Extended Berkley Packet Filter
metrics

docker - container management stats
KVM - libvirt

mysql and postgresql - database stats
prometheus - end-points

redis - system stats for redis daemons
samba - filesystem

smart - disk health

vmware - platform stats

... many more.

PCP Logger “farm” : 1 Logger host, O(100) hosts

Logging Host

HostA — 9 pmlogger ——

HostB __|__ pmlogger ——
Host C ————9 pmlogger ——

HostD ————» pmlogger ——

One directory and archive set per host
o /var/log/pcp/pmlogger/HOSTNAME

Daily rotation and compression
Default 14 day retention
Easy to set up and manage
o /etc/pcp/pmlogger/control.d/HOSTNAME

Common metrics logging config
o /var/lib/pcp/config/pmlogger/config.default

O(50) GB storage per host
~ 5 TB total storage
~ 1400 archives in 100 directories

PCP Data Centre : ~10 Logger “farms”, O(1000) hosts

Host A

Host B

Host C

Host D

Host A

Host B

Host C

Host D

Logging Host

> pmlogger ——

——p pmlogger —

——— pmlogger —

——p» pmlogger —

=
~A
-
g
-

Logging Host

=

> pmlogger

. pmlogger

——— pmlogger

———p» pmlogger

R—

—

—_—

—_—

<
-
-
7
-~
-

=

Logging Host

HostA

Host B

HostC —

HostD —

HostA —

HostB __|

HostC —

HostD —

9 pmlogger ———

——p pmlogger —

——— pmlogger —

——p» pmlogger —

=
~A
-
g
-

Logging Host

=

> pmlogger

. pmlogger

——— pmlogger

———p» pmlogger

—_—

—_—

—_—

—_—

(etam—
-
-

7
-
-

=

Multiple logger “farms”

o Split across application domains
~ 5 TB per farm
~ 50 TB total storage - just for perf data!
~ 14000 archives
~ 1000 archive directories

o spread across ~10 logger hosts
Difficult to manage so many archives
Difficult to monitor ~

How can we scale globally with
multiple datacentres?

Scaling

Original PCP PMAPI was not designed to efficiently query/search across a large
number of archives/hosts - one PMAPI context per host or archive

This has served well for many years, helping to solve countless performance
analysis cases involving classic client-server production scenarios

We recently added “multi-archive” contexts, so monitoring tools could e.g. name a
directory (or multiple archives) and the archives would be “stitched together” on the
fly. We also added transparent archive decompression.

This all works, but it can be slow, especially when the archives are compressed
and/or have large dynamic instance domains (like per-process data).

... and it doesn’t scale to thousands of hosts/archives on a global scale

PCP with REDIS & Grafana

Data Centre A
PCP Archives

REDIS
Server

Data Centre B
PCP Archives

Data Centre C /

PCP Archives

Grafana - PCP TEST - Google Chrome

ana - PCP TEST X A

C @ localhost:30¢

8% PCP TEST -

hostname

Shack 8 cprus

CPU Utilization

19:45 19:55

kernel.all.cpu.user kernel.all.cpu.sys == kernel.all.cpu.nice

== kernel.all.cpu.intr == kernel.all.cpu.wait.total
== kernel.all.cpu.steal == kernel.all.cpu.idle

Disk Thruput
1.0GBs

19:40 19:45 1

S 500 MBs r
= \
20:05
s

9:50 19:55 20:00
all.read_bytes == disk.all.write_bytes

Memory Usage

9:45 19:50 19:55
nem.util.cached == mem.util.bufmem == mem.util.other == mem.util.free
250K

B

— kemnel.all.sysfork = kemel.all pswitch

Process Fork and Context Switch Rate

Dl

19:50 20:00 20:05

Redis - scalable key-value data store

http://redis.io
V5 and later supports native time-series

Extremely fast/scalable, with extensive indexing for time-series data

o Runs at ram speed, disk backed cache
o Configurable retention, automatic FIFO data discard
o Replication and clustering options

Secure - authentication, SSL, etc
Commercial services available, e.g. google-cloud
Cloud and Hybrid-Cloud (private/public) friendly

@) run your own server, run on
open-source (and written in C)
Used by pmproxy to store, index and query PCP archive data

http://redis.io

Global: PCP + Redis Database + Grafana Monitor

a

PCP Data Centre

N

Grafana
server

PCP
data-source

X

/Y

PCP
host

pmproxy
libpcp_web

pmproxy

libpcp_web

—®| Browser

WEB

Redis

Database

No changes to core PCP - we extend
and enhance pmproxy / libpcp_web
pmproxy -t discovers and scrapes (aka
“logtails”) PCP data from archive logs as
soon as it is written by pmlogger

o Fully async using libuv (no polling)

o -t option Ingests into REDIS
Near-live data and historical data
available for queries (no host contexts)
No fetched live data - has to be logged
Data for all hosts in one DB “unified
contexts”
Extremely fast time-series queries using
pmseries query language
http REST API for webapps - GRAFANA
Secure - Hybrid/Cloud - global scalability
Handy for support - no need to upload
huge perfdata archives for analysis!

PCP Native Grafana Data-source [g:g“ff:; APP }

Provides the “glue layer” between Grafana panels and lt°p/3°°°
the data back-end (pmproxy).

Different panels in same dashboard can use different
data-sources PCP
Uses html protocols, can be local or remote SElERSETEE
Supports no auth, basic auth, CA and oauth2 (e.g. GH) l‘Cp/““‘”zz

Implemented in Typescript / javascript omMproxy
o https://github.com/goodwinos/pcp-json-datasource libpcp_web

grafana-server

PCP
Archives
Archives

Same datasource can be configured multiple times, tcp/6379

each to a different back-end (host:port)
Under concurrent development with pmproxy and @
libpcp_ web.

Not yet packaged.

https://github.com/goodwinos/pcp-json-datasource

PCP Grafana - demos

Install
o Install grafana builds for Fedora / RHEL https://copr.fedorainfracloud.org/coprs/mgoodwin/grafana/
o Redis v5 or later: dnf install redis; enable and start redis service
o PCP 4.3.1 + pmproxy/libpcp_web patch - contact PCP team
m Enable and start pmproxy service
o pcp-json-datasource https://github.com/goodwinos/pcp-grafana-datasource
Configure, test and save pcp-datasource - demo

Create and rename a Dashboard, add Panels
o Singlestat, graph, table, text, heatmap, etc. Many others on-line
o Query syntax - [metric.name] '{metadata qualifiers}' '[time-window specification]’
m Omit the time-window specification - grafana supplies it. See pmseries(1) for details.
m Metadata qualifiers not yet implemented - instances, hosts, labels etc
Time controls - demo
o Absolute intervals, or relative to ‘now’, optional periodic refresh
o Supplies time-window (&start, &finish and &step) parameters for queries issued by datasource.
Share Dashboard, add drill-down links - demo
o Export JSON panels - proposed as a PCP GSOC project

https://copr.fedorainfracloud.org/coprs/mgoodwin/grafana/
https://github.com/goodwinos/pcp-grafana-datasource

WIP - PCP pmproxy and grafana datasource

Fix the dropped response write bug (may be a grafana bug, or pmproxy bug?)
Support metadata qualifiers in queries, see pmseries(1)

o In data-source, query URL params will need to be encodeURIComponent()'d to escape

special chars suchas {}”’ ? etc

Data-source - handle responses with multiple time-series, e.g. when the query matches multiple
instances or hosts. Currently expects and mandates exactly one time-series in the response.
Data-source and back-end - support responses in table format - needed by some Grafana panels
Data-source - use PCP metadata. E.g. metric type (counter, instant), units, scale, help text
Data-source - allow legend string override - needs a text box next to Query, template variables, etc
Data-source - use /grafana/search URL to provide query helper/hints, e.g. metric name completion
libpcp_web - implement functions, e.g. server-side rate conversion, statistical functions
Authentication, https/ssl in back-end
Data-source - packaging - grafana-pcp-datasource (in grafana)? pcp-grafana-datasource (in pcp)?
Packaging Grafana itself in Fedora, see BZ#1670656
pmproxy import live data into redis
pmproxy import existing archives into redis (not just log-tail active archives)
QA tests (for grafana too)

