JF| 5 Chatz <dchatterton@aconex.com>
ie— Cowan <cowan@aconex.com>
g,ELJ Nathan <nscott@aconex.com>

System-Level
Performance
Analysis With PCP

Project success. Easy as

mailto:nscott@aconex.com

Welcome to Aconex!

71 Scalable performance monitoring

71 Performance Co-Pilot

71 Brief introduction to Aconex

71 PCP integration into Aconex application

71 Practical examples

Scalable Performance Monitoring

21 SGI in Melbourne started developing
Performance Co-Pilot 15 years ago

71 Goal was to help SGI users understand very
complex system performance problems

7 Traditional tools
7 fail to scale to large machines
#1do not provide low level granularity
71 difficult to perform retrospective analysis
7 have poor visualisation of large data sets

aoonesr

[[fotaf Disk IiQ Rale for Host babwion [E

Hie

Many resources

Options Launch

Live

<:rT\ babylon:disk.dev.total["dks1dl"]

4.81 count / second [2.674% of expected max]

Scale |

[o | T | |Thu Mar 5 17:85:43 1998‘

O ——

N

EEFRAEIRE

Complex architectures

ACONE&L

Scalable Performance Monitoring

7 How do you monitor a 512
processor machine

71 top does not scale!

7 How do you monitor a cluster
of 20x512 processor
machines?

7 How do you know if what you
are observing today has
happened before?

How do you correlate today’s
event with other activity on
the system?

Our goal tonight

7 Demonstrate how Aconex has taken an open
source performance monitoring toolset and
integrated it into our Java application

71 Overview of PCP and how it works
7' How it is integrated

71 Differences in monitoring a JVM to an Operating
System

71 Examples of how we have used PCP in anger

71 All the software you will see tonight has been
developed here in Melbourne
acone«

PCP Overview

7 What is PCP?

71 Open source toolkit for system level performance
analysis

71 Live and historical
71 Extensible (monitors, collectors)
71 Distributed

Architecture

kmchart
pmie

aoonesr

Data Model

71 Metrics come from one source (host / archive)
71 Source can be queried at any interval by any monitor tool
#1 Hierarchical metric names
e.g. disk.dev.read and aconex.response_time.avg
71 Metrics are singular or set-valued (“instance domain”)

71 Metadata associated with every metric

Data type (int, double, ...)
7 Data semantics (units, scale, ...)
71 Instance domain

Monitor tools

71 pminfo, pmprobe, pmdumptext
71 pmlogextract, pmlogsummary,

pmwif
7 kmchart
71 pmstat
71 pmie
71 acxstat
71 acxtop

& PCP Live Time Control

Eile Options Help

PCP Charts

File Edit Record Options Help

W e a3z e

Interval [10.00 l [Secnnds |v]

[Thu Jul 3 10:20:09]
Time

a

Control

& pcP Archive Time Control

Eile Options Help

Interyval [300.00] [Secunds

Positian [Sat kday 10 22:00:00

Speed w 16000 | [I I

Archive Control

Nnrmal

4pp | indes | DE | Mas | viewer |

100
a0
L)
+0
20

)

% ufilization

count | min
o0 o
[=2)
[=Jr=]

Q00
)
=)
G40
a0
B0
40

CPU Hilizadion [appriel]

I User [Eernel [Mice [Tlinke [0 weit [E1d1e

Load Averag e [appmel]

11 min [5 min [15 min

Il oones respanse_fime.samplesimel

Ilcones response_fime adjaeaimel

Il acones.memoreheap maxmel] [l acones memory heap.usedimel]

@LIVE

09:39:00 09:42:00 09:4 5:00 09:45:00 09:51:00 09:54:00
Thu Jul 3 2008 EST-10

Aconex Overview

$210bn worth of projects in 70 countries
135,000 users and 3,500 client organizations
300 people, 24/7 local support, in 35 cities

7 Aconex provides online information management for construction,
engineering & energy

7 A sophisticated workflow engine that supports established industry
processes in complex, fast-moving project environments

71 SaaS application delivery, one login, multi project

Gartner (Oct 2007):
Collaboration market is evolving in response to demand for a coherent set of capabilities,
processes and services that span communication, coordination, communities and

informal social interactions.
aoconexs ..

Large projects need collaboration systems to

operate effectively and manage risk

7

7

Hundreds of companies come
together on large projects

Most communication is between
companies

The volume of documents and
correspondence on projects is
huge

Participants on large projects are
increasingly geographically
dispersed

Risk management / litigation

necessitates keeping a strong
audit trail of project information

Participants: 3,030
Locations: US, Europe, Asia, ME
Information: 9.6m docs & correspondence

Data managed: 4.27B

aoonesr

What's hard about monitoring Java?

Java's never standalone; interacts with
2 0S
71 Network
7 Database

721 Can't monitor Java in isolation

71 The JVM makes things more complicated

71 Java heap + GC means that native memory metrics are not so
useful on their own

71 One more layer of indirection between everything
71 To the OS, JVM can just look like a big amorphous blob

aoonesr

How do we collect the data?

71 Needs to be
7 Fast
71 Low-impact
77 Not stress the subsystems we're trying to monitor!
7/ Basic monitoring framework is very simple + lightweight
71 Observer/Listener pattern
71 Monitor registers self with Monitorables
71 Monitorables inform Monitors when they change value

71 Most Monitorables are very lightweight

7 MonitoredCounter = wrapper around an AtomicLong, monotonically
increasing (e.g. event counter, cumulative tally)

7 MonitoredValue = any sort of value, commonly
AtomicLong/Atomiclnteger (show current state — in-progress events)

71 Also have a polling implementation to monitor third-party sm
(uses Timer to poll, updates if value changes)

Aconex PMDA

aconex, cache.evictions=16,long

é;;unex.duwnluad.hytes=4ﬂrl ong
aconex. download.files=56.long

aconex.jmsmsgs.sent=132 long
aconex, jmsmsgs, quewe=136 long
aconex.jvm.version=144,string

000011110000001001010
1010100001110001111110%
111001010101010101010010

How do we get the data to PCP?

71 PcpMonitorBridge is an (the only!) implementation of
Monitor

7 Maintains an update queue of changed values

71 Creates a memory-mapped file (NIO) which gets mapped
into PCP Agent's address space

71 Shared memory between JVM and C agent (memory == fast, and
no I/O-related system calls)

71 As close to 0 overhead as we'll get
71 Keeps a Map of Monitorables = file offsets
71 Polling thread drains queue, writing new values to file
#1 Changes then visible to custom PCP agent
71 Is also an Mbean (CompositeData), just for good measuré

How It hangs together

+listeners LT:EH!EEE

Monitorable

Monitor

+valueChanged(Monitor)

ﬁ +name: String
+mondtored values |+description: String
¥ .

+attachMonitor(Monitor)
+removeMonitor(Monitor)
+get(): T

PcpMonitorBridge

+pendingUpdate: BlockingQueue
+updateThread: Thread

+file: File "--------l-l
+offsefs: Map<Moniforgble, Integer=1 | |
I - -—— o wm ow y
[1 T:0bjecty
MonitoredCounter| |MonitoredValue
+value: Atomiclon +set(T)

+inc ()
+1inc(amount:long)

aoonesr

aconex-pcp-bridge lifecycle

71 PCP requires a fixed set of metrics
71 Need to assemble the list of metrics before handing over to PCP
71 Cannot dynamically add metrics at runtime

71 MonitorableRegistry is (ugly) static class maintaining a
singleton map of identifiers to Monitorables

71 Monitorables register themselves with the Registry on
creation

71 Starting the PcpMonitorBridge 'freezes' the Registry, no
more monitorables can be created

71 Dependency injection would be a lot less disgusting here
(and let us have multiple Monitors)

aoonesr

External metrics we collect

71 System-level metrics
7 network.interface.in.bytes
71 kernel.all.cpu.sys
71 disk.all.write_bytes
7 ..
71 Do these correlate with observed events?
71 We've found JVM bugs this way...

71 3rd-party systems + software
71 pdfg.length
71 nfs4.client.regs
71 sglserver.locks.all.wait_time
7 ..

7 Helps assess the impact of what we're doing in the JVM
systems (or vice-versa)

gn othea

JVI\/I Internal metrlcs

71 Often stuff exposed through JMX anyway
71 MBean polling Monitorable implementation

71 Kinda boring, but useful:
71 aconex.memory.gc.full.count
71 aconex.memory.gc.minor.time
71 aconex.memory.permgen.used
7l aconex.memory.survivor.committed

71 aconex.jvm.compilations
A ..

71 Mostly memory-related, but a few more possible (and
easy)
7/ Classloader info

71 Thread counts
7 ete... m

Application-level stats

71 Where it gets interesting (for us!)

2 1If in doubt, monitor it — it costs almost nothing and might
be useful later
71 Cumulative counters: .logins, .upload.files, .download.files
71 Instantaneous state: .sessions.active
71 Unchanging values for sanity checking/correlation: .jvm_version

7 More advanced stats: .response_time.{min, max, avg, median,
adjavg, samples}
Monitor other libraries:
71 jmsmsgs.{sent, queued, processed}
71 .cache.region.{misses, requests, evictions, load_time, ...}

71 Instrument the DB (with JDBC Driver decorator):
71 .connections.{in_use, available}

71 .jdbc.queries.{active, total}
7 ... and about a bazillion more... m

And then we get tricky...

71 Implementations of InputStream and OutputStream which
count bytes as they pass through

7 Much more accurate than just counting instantaneously by filesize
71 SessionMonitor (normally off) — calculates sizeof(session
object)
71 .sessions.bin_256KB_2MB.{count, max, mean, min, total}
71 Per-controller metrics — time each request at start/end
71 .controllers.controllername.{count, time}
71 But we also know that each request is served by 1 thread;

can snapshot other values at start/end of request and use
as counter deltas

71 .controllers.controllername.{utime, stime, blocked.time,
blocked.count, waited.time, waited.count}

Challenges still exist...

71 Getting transparency into completely isolated third-party
systems is still difficult

7 e.g. one standalone 3"-party (Java-based) system was
misbehaving, needed profiling

7 How do we get that JVM monitored by PCP?
71 "Cuckoo's Egg" approach
7 Custom org.apache.log4j.Appender
#1 Hijack class <init> process to set up PCP bridge
7' Monitor JVM
7 Find problem!

Adding a new metric

. private final MonitoredCounter fileRequestCounter = new
MonitoredCounter("aconex.pdf.file requests", "Number of file
requests by the PDF server");

. protected ModelAndView handleRequestInternal(...) {

fileRequestCounter.inc();

71 Produce new version of pmda

7 Script runs against the memory-mapped file and produces new
PMDA code, which is...

71 ...compiled and released via RPM (concurrent with app release)
71 Done!

2% pmval -r -t lhour -a /archives/<...> aconex.pdf.file requests

09:13:22.885 630
10:13:22.885 639
11:13:22.885 696

aoonesr

Aconex PMDA

71 Metric set extended on each release

71 Both backward and forwards compatible, so production is usually
updated (live) well in advance of new application releases

71 Engineering aware of operational need for instrumentation, so
new code is always instrumented up front now
7 Scripts largely automate the PMDA code changes
71 Not completely automated
71 Allows extra review and sanity checking :-)
7 What to instrument?
71 Quailty of Service - application response time! throughput
7 Resource utilisation (esp. time) — CPU, I/O, disk
21 Activity (bytes, files transferred, emails sent)

7 Problem parameters — queue length, size of file m

Future directions

71 We really want to open-source this work!
71 Monitoring framework (counters, values, etc)

21 Utility classes (wrapping Input/OutputStreams, JDBC driver,
MBean bridge)

71 It's with the lawyers! We'll keep AJUG updated...

Tidy up and make more generic
#1 Custom controller metrics = generic (single-thread) event timing

71 More detailed interaction metrics (per-thread if possible)
7 Time spent waiting for other servers, DB locks taken, etc

71 Architecture tidy-up (isn't there always?) -- e.g. get rid of
(or clean up) Registry ickiness

71 Could easily extend to other Monitors

71 Expose to JMX directly?
71 Windows perfmon Monitor? m

Final steps

71 pmie and Nagios — production alarms
71 notifications = some_inst (aconex.notification.jobs_failed > 0)

I,

-> shell "send_mail Notification jobs failed: %v",
Archives used to verify rules

Catch unusual resource utilisation, error conditions, and poor
quality of service

71 pmie and pin-point monitoring
71 Automate generation of threaddumps, heap capture, profiling
7 kmchart — live and historical production monitoring
7 pmdumptext / acxstat — ditto, console tools
71 Benchmarking, new system configuration
71 Planning for the future

aoonesr

Further Information

7 http://www.aconex.com [/Careers.html]

71 http.//oss.sgi.com/projects/pcp

71 http://www.ohloh.net/projects/pcpo

7 http.//techpubs.sgi.com/ [PCP Programmers Guide]

http://www.aconex.com/
http://oss.sgi.com/projects/pcp
http://www.ohloh.net/projects/pcp
http://techpubs.sgi.com/

Thank you

Project success. Easy as

ACONESL

Appendix 1 — The present

hcp distribution

Appendix 2 — The future

/
\metrics-
_core

changed to generic
event-timing framework

generic —

'bus'

—

other monitors?

—— | l TogTiesT EFICST SNMPT
LI e ot |
-

metrics-
| Pep

_

made mare generic, '
demands full metadata f

f
\

777

Legend

~
Border style: code license

Salid =
Closed-saurce/] F1055
Proprietary v

Border color: language

Black = Coloured =
C code Java Code

Background ceolor: generality 1

not acx-specific; selects
metrics by rule (regex?)

\ eads metric.s f:om a
- - \ Pcp distribution ot e
~ J

aoonesr

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Thank you
	Slide 30
	Slide 31

