
Monitoring with

Performance Co-Pilot

David Disseldorp
ddiss@suse.com

2

Presentation Overview

• Introduction to Performance Co-Pilot (PCP)

• Demonstration

• Monitoring Your Application with PCP

3

What is Performance Co-Pilot?

• PCP is a system level performance monitoring toolkit

• Collection, monitoring and analysis of system metrics
 Cross platform: Linux, Mac OS and Windows
 End-to-end: Hardware, Core OS, services and applications

• Distributed architecture
 Monitoring of local and remote nodes

• Real-time or retrospective
 Live system or archive

• Pluggable
 New agents system metrics within PCP

4

What is Performance Co-Pilot?

• Roles broadly divided into two categories
 Producers: Collect and export performance metrics

 Consumers: Record, visualize, monitor and analyze performance
data

• Hosts may operate as producers, consumers or both
 Multiple consumers may connect with one or more producers

5

Core Components

 Performance Metric Domain Agents
 Extracts metric data from a system component for exposure within PCP

 Performance Metrics Collector Daemon (PMCD)
 Coordinates handling of fetch requests between monitoring applications and agents

 pmlogger
 Utility to capture and store metrics exported by PMCD

 pmchart
 GUI providing charting of metrics in real-time as well as retrospectively

6

What is Performance Co-Pilot
Distributed Architecture

7

Use Cases

• Administrative
 Tracking of resource utilization
 Understand how workload effects usage

 Capacity planning
 Benchmarking

• Debugging
 System postmortem
 Identification of performance regressions
 Side by side comparison of behavior across application versions

 Isolation of problematic behavior

8

Performance Metric Domain Agents

• Exports metrics obtained from underlying data source
 Each agent is responsible for a specific metrics domain
 Communicates with PMCD on the local system

• Many agents currently available
 Linux & Windows
 CPU, Disk, Memory, Network, Filesystems, Per-process statistics

 Hypervisors
 Databases
 Sendmail

9

Performance Metrics Collection
Daemon

• One pmcd process running per-host
 Manages metrics extraction from all agents
 Routes client requests to one or more agents, aggregates response

 Maintains namespace for all metrics exposed
 Name space maps external metric names to internal numeric identifiers

• Accepts connections from monitoring utilities
 Single point of contact for local or remote monitoring agents
 Listens on TCP port 44321 by default
 Primitive host based access control
 Authentication and encryption not currently supported

10

pmlogger

• Command line utility for metrics archival

Concurrent logging of local and remote hosts

Simple list style configuration

What metrics should be collected and how frequently

• Archive playback via pmchart and pmval

Retrospective analysis of system state

Compare archives from working and non-working situations

Archives self-contained allowing analysis off-site

• Tools for archive management

pmlogger_daily, pmlogger_check, pmlogger_merge

Log rotation and aggregation, set and forget

pmlc

Dynamic runtime re-configuration

11

pmchart

• Visualization of metrics

• Fully Customizable charting canvas
 Multiple metrics (of same units) per chart
 Multiple charts per tab
 Line, bar, stacked bars, area plot, utilization

 Save window preferences as a “view”
 Collection of charts, metrics, graph styles, legends, labels

 Integrated time control
 VCR style stop, play, record, rewind paradigm

 Source metrics from one or more live systems

 Alternatively one or more archives

12

Other tools

• pmie

Evaluate rules or expressions

Perform an action

Automatic detection of performance anomalies

• pmlogsummary

Calculate statistics across an archive time window

• pmstore

Selectively modify state in an agent

Toggle debug flags, enable optional instrumentation, etc.

• pmval

Command line based dumping of values in realtime or from archive

• pmproxy

Proxy PCP requests between a head node and an isolated network

• Parfait[6]

Externally maintained Java library capable of exposing metrics to PCP

Demonstration

14

Writing your own agent

• What values am I capturing?

• Metrics definition

Semantics

e.g. counter (value is monotonically increasing)

Units

e.g. bytes

Data type

e.g. 64-bit unsigned int

Instances

e.g. eth0, eth1

Transient

Value

Instances

• Namespace

Each PMDA requires a unique domain identifier

15

Writing your own agent

• What language?
 C, Perl, Java

• Architecture
 Separate process managed by PMCD
 Dynamic Shared Object
 PMCD is latency sensitive and must be stable

• How can the agent access these counters?
 Memory mapped file, kernel proc file, IPC
 Generic MMV agent
 Self descriptive memory mapped files

16

Agent Example
Clustered Trivial Database (ctdb)

• ctdb already maintains per-node stats:

• Metrics without instance domain

Number of clients = instantaneous

Total calls = monotonic increasing counter

Pending calls = instantaneous

Memory used = instantaneous, bytes units

Maximum call latency = instantaneous, seconds units

hex-14:~ # ctdb statistics
 num_clients 6
 total_calls 77
 pending_calls 0
 memory_used 73691
 max_call_latency 0.000549 sec

17

Agent Example
Clustered Trivial Database (ctdb)

18

Agent Example
Clustered Trivial Database (ctdb)

• Namespace definition
 Per-metric identifiers

src> cat pmns
ctdb {
 num_clients 155:0:0
 total_calls 155:13:24
 pending_calls 155:14:25
 memory_used 155:19:30
 max_call_latency 155:23:34
}

19

Agent Example
Clustered Trivial Database (ctdb)

• Metrics definition
src> vi pmda_ctdb.c
static pmdaMetric metrictab[] = {
...
 /* max_call_latency */
 { NULL, { PMDA_PMID(23,34),
 PM_TYPE_DOUBLE,
 PM_INDOM_NULL,
 PM_SEM_INSTANT,
 PMDA_PMUNITS(0,1,0,0,PM_TIME_SEC,0) }, },
};

20

Agent Example
Clustered Trivial Database (ctdb)

• Main Program

• Two fetch callbacks from the event loop
 Initial fetch request, then one per metric

pmdaDaemon() /* initialise daemon context */

pmdaSetFetchCallBack() /* register handler for PMCD fetch requests */

pmdaInit() /* export supported metrics */

pmdaConnect() /* establish an IPC connection with PMCD */

pmdaMain() /* main event loop */

21

Agent Example
Clustered Trivial Database (ctdb)

22

Where can I get it?

• SGI project page
 http://oss.sgi.com/projects/pcp/

• openSUSE Factory
 Latest PCP base and GUI packages to ship with openSUSE 12.1
 Outdated (base only) version in 11.4

• SUSE Gallery
 “openSUSE Performance Co-Pilot” appliance

http://oss.sgi.com/projects/pcp/

23

References

Performance Co-Pilot Website

http://oss.sgi.com/projects/pcp/

PCP Manual

http://oss.sgi.com/projects/pcp/pcp-gui.git/man/html/index.html

Performance Co-Pilot User's and Administrator's Guide

http://oss.sgi.com/projects/pcp/documentation.html

Performance Co-Pilot Programmer's Guide

http://oss.sgi.com/projects/pcp/documentation.html

Parfait – Java monitoring library

http://code.google.com/p/parfait/

Authentication and ACLs proposal

http://oss.sgi.com/archives/pcp/2011-06/msg00026.html

PCPIntro(1) Man page

RCE Podcast: Ken McDonell on Performance Co-Pilot

http://www.rce-cast.com/Podcast/rce-53-performance-co-pilot.html

PCP FAQ

http://oss.sgi.com/projects/pcp/faq.html

Corporate Headquarters
Maxfeldstrasse 5
90409 Nuremberg
Germany

+49 911 740 53 0 (Worldwide)
+www.suse.com

Join us on:
www.opensuse.org

24

http://www.suse.com/
http://www.opensuse.org/

This document could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein. These changes may be
incorporated in new editions of this document. SUSE may make improvements in
or changes to the software described in this document at any time.

Copyright © 2011 Novell, Inc. All rights reserved.

All SUSE marks referenced in this presentation are trademarks or registered trademarks of
Novell, Inc. in the United States. All third-party trademarks are the property of their respective
owners.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

