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Abstract. Understanding the performance of distributed computing 
systems  is  a  complex  and  highly  specialised  task.   Ideally, 
information  from all  aspects  of  each  system involved  would  be 
used  to  inform  an  analysts  view  of  an  individual  component’s 
contribution  to  a  variety  of  performance  criteria.   This  study 
investigates the merit of extending an existing sampling-based set 
of performance analysis tools to incorporate event trace data into 
the set  of  available  metrics.   Case  studies  of  this  approach  to 
performance  analysis  in  production  environments  has  been 
undertaken.   Initial  progress  suggests  the  richer  collection  of 
information has improved our analytic capabilities.  Deeper insight 
can be gained from bridging the gap between traditional methods 
of performance data gathering and the increasingly popular event 
tracing paradigm can be gained.
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Overview

Understanding where time has been spent in performing a computation or servicing a request  is at the 
forefront of the performance analyst’s mind.  Measurements are available from every layer of a computing 
system, from the lowest level of the hardware up to the top of the distributed application stack.  In recent  
years  we  have  seen  the  emergence  of  tools  which  can  be  used  to  directly  trace  events  relevant  to 
performance.  This is augmenting the traditional event count and system state instrumentation, and together  
they can provide a very detailed view of activity in the complex computing systems prevalent today.

We can categorise performance instrumentation approaches into two broad categories which we hereafter 
refer to as sampled values and event traces.

Sampled values are typically cumulative counters of some event, resource, quantity or time, or they are an 
instantaneous observation  or  a  discrete  value.   These  metrics  are  either  inexpensive  to  update  or  are 
maintained  for  functional  purposes  independent  to  the  need  for  instrumentation,  are  often  permanently 
enabled and are exported from the instrumented component using statistical sampling (Jain, 1991).  The  
instrumentation and interpretation techniques are generally simple, well researched, and widely used in the 
field - as a result these sampled values are ubiquitous in all modern computing systems.

Event traces record information about individual events as they happen.  An event trace is an asynchronous 
timestamped sequence of one or more events, where the events may be milestones in an operation, such as 
its start or end point, or a singular observation.  Data about that specific event is often part of the trace data  
(Barham et al., 2003) which aids understanding the nature of the event.  Events can also be nested, such 
that one event may be associated with a parent or existing event being traced.  More sophisticated tracing  
tools are then able to perform end-to-end tracing of events which can span multiple subsystems (Barham et  
al., 2004 and Fonseca et al., 2007), and can even tie together traces from completely unrelated software and  
hardware components, allowing construction of a timeline graph showing in each subsystem where time has 
been spent in servicing an individual request.

A request,  in  this  context,  should  be considered in  the broadest  possible  scope – being not  limited to  
something as short and tightly defined as a service request (device operation, database request, filesystem  
request) – but  also potentially any end user request  (a web application interaction,  for example).   One  
request may be nested within another, and they may span thread, process and system boundaries.

Event tracing has the advantage of keeping the performance data tied to the individual requests, allowing 
deep inspection of  a request  which is  useful  when performance problems arise.   The technique is also 
exceptionally well  suited to exposing transient latency problems (Bligh et al.  2007).  The downsides are 
increased overheads  (sometimes significantly)  in  terms  of  instrumentation  costs  as  well  as  volumes  of 
information produced.  To address this, every effort is taken to reduce the cost of tracing - it is common for  
tracing to be enabled only conditionally, or even dynamically inserted into the instrumented software and 
removed when no longer being used.

Performance analysis requires visibility into all aspects of system performance, including end user response 
time, throughput, latency, resource utilisation, and bottleneck identification.  Generic tools that can extract 
performance  metrics  from  multiple  systems  and  from  the  different  subsystems  within  each  system  - 
hardware, operating system, system services, databases, and applications - are invaluable.  When using 
such generic tools one can much more readily apply general rules and lessons learnt about performance 
data and modelling from one situation to the next (Gunther, 2004).

Traditionally,  we have predominantly  used sampling techniques,  where metric  values are sampled on a 
relatively long (usually fixed) time interval, and over time we make observations about resource utilisation, 
throughput, queue lengths, and so on.  Such approaches have the advantage of having low impact on the  
monitored  system,  provide  an  excellent  starting  point  for  diagnosing  performance  problems,  and  lend 
themselves to tasks like resource monitoring over long periods of time, performance modelling, and capacity 
planning.

The relatively long sampling intervals used, while keeping sampling costs low, sacrifice the ability to perfectly 
reconstruct  the  actual  system behaviour.   This  would  require  significantly  shorter  sampling  periods,  as 
defined  by  the  Nyquist-Shannon  sampling  theorem (Shannon,  1949).   To  avoid  the  inherent  cost  and 
associated disturbance to the system under observation, we augment our baseline sampling-based metrics 
with higher fidelity trace-based metrics.
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Tracing technologies with low impact and high levels of safety when enabled in production environments are 
becoming increasingly prevalent, suggesting the information they provide is of high value in the diagnosis of  
performance  problems.   The  trend  appears  to  be  toward  increasing  use  of  tracing  in  production 
environments,  with  strategically  placed static  trace points being permanently  enabled.   Recent research 
describes the current focus on tracing technologies as being the result of increasing complexity in hardware 
and software (Desnoyer, 2009), and others have described the insight into the complexity of the operating 
environment as the key driving force behind their distributed tracing design and successful adoption of the  
solution (Sigelman et al., 2010).

While there are some similarities between these different sources of performance data, there is a mismatch  
in  semantics  and  data  volumes  making  this  an  interesting  problem  for  research.   Combining  the  two  
approaches using a unified framework for performance analysis is expected to provide additional insight that 
cannot readily be obtained if analysis is restricted to only one of the available sets of performance data.

This research has extended an existing open source framework in such a way that both arbitrary sampled  
values and arbitrary event traces can be observed and analysed using a common set of generic tools.  Case 
studies evaluating the effectiveness of this approach are presented.  Problems encountered along the way 
are  also  described,  along  with  findings  about  the  (sometimes unexpected)  requirements  of  this  unified  
approach.

Review

Classic approaches to a range of analytical approaches for performance modelling, bottleneck analysis and 
performance diagnostics (Jain, 1991 and Gunther, 2004) rely heavily on statistical sampling techniques.  The 
many ways to approach problem solving using such methods is a mature research field, and thus we will  
focus our review on the emerging field of event tracing and the systems that have explored it.

Particular attention is paid to the visualisation techniques that others have explored to date, as a unified  
visualisation tool is expected to be important to our approach.

Magpie

Advances have been made in recent times in the use of event tracing to perform fine-grained system-level 
performance analysis.  One of the earliest and most comprehensive event tracing frameworks is Magpie 
(Barham et al, 2003 and 2004).  This project builds on the Event Tracing for Windows infrastructure (Park et  
al, 2004 and 2006) which underlies all event tracing on the Microsoft Windows platform.  Magpie is aimed 
primarily at workload modelling and focuses on tracking the paths taken by application level requests right  
through a system.  This is implemented through an instrumentation framework with accurate and coordinated 
timestamp generation between user and kernel space, and with the ability to associate resource utilisation 
information with individual events.

The Magpie literature demonstrates not only the ability to construct high-level models of a distributed system 
resource utilisation driven via Magpie event tracking, but also provides case studies of low-level performance 
analysis, such as diagnosing anomalies in individual device driver performance.  Magpie utilises a novel  
concept in behavioural clustering, where requests with similar behaviour (in terms of temporal alignment and 
resource consumption) are grouped.  This clustering underlies the workload modelling capability, with each 
cluster containing a group of requests, a measure of “cluster diameter”, and one selected “representative 
request” or “centroid”.  The calculation of cluster diameter indicates deep event knowledge and inspection  
capabilities, and although not expanded on it implies detailed knowledge of individual types of events and 
their  parameters.   This  indicates  a  need for  significant  user  intervention  to  extend  the  system beyond 
standard operating system level events.

One major issue which we hope to tackle is identified in the Magpie literature during discussion of the use of  
Magpie in database performance analysis.  Using event tracing, Magpie is able to track processor utilisation  
and I/O submission patterns.  However, database servers make use of a shared buffer cache resource, and  
this is often a critical factor affecting overall system performance.  Such caches are of course not unique to 
databases and caching is used in many high level applications to avoid interactions with slow components, 
whether that be tertiary storage or a second or third level cache.  It is presented as an area for future work  
for Magpie to augment the existing traces with more information about the state of SQL server caching  
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during tracing.   This approach would seem to indicate a more general  requirement for increases in the 
volume of trace data as higher level caches are added, and again the requirement for detailed knowledge of  
higher level constructs at the lowest level (individual event traces).  Cache state and cache effectiveness 
information is often maintained in higher level (typically sampled) performance metrics, and the approach of  
augmenting trace-based analysis with this system level information, rather than incorporating it into each and 
every trace seems a worthwhile trade-off.  Certainly, while it may indeed be prudent to add some cache 
access information to an individual trace, one cannot possibly hope to know about and include the state of  
every possible cache affecting an event into individual event traces.

As an aside, it is worth noting here that, for the first time, we see in Magpie the use of a binary tree graph to  
represent the flow of control between events and sub-events across distinct client/server processes and/or 
hosts.

Although not explicitly stated (and relying heavily on the trace implementation), Magpie represents an early  
and successful foray into unifying sampling and tracing techniques in realistic production environments.  The 
association of resource utilisation, a traditionally sampled class of performance metric, with events closely 
mirrors some of our goals.  Our intentions deviate from it with the arguably more pragmatic and inclusive use  
of all available performance data in the system.  This includes data from alternate operating systems and 
event tracing implementations, which are typical of distributed and heterogeneous systems.

DTrace

Arriving in the midst of the current wave of tracing technologies was the Solaris DTrace toolkit (Cantrill et al,  
2004).  DTrace provides dynamic tracing facilities, aiming to avoid the human overheads associated with 
static tracing.  This is done in such as way as to not require any fixed kernel probe points initially, and to  
leave the system as it was originally (with no probe points or other modifications) once DTrace is no longer 
active.  While it has since been shown that for tracing of some production workloads a small number of  
“always on” static trace points is warranted, DTrace represented a quantum leap in terms of both exposing a 
huge number of previously invisible trace points, and in greater flexibility by allowing almost arbitrary actions.

This is achieved through a high-level control language (the “D” language) which coordinates activation of 
probe points with trace actions.  Built into the system is a focus on providing absolute safety in these user  
defined  actions,  as  well  as  reliability  in  the  reporting  mechanism (dropped  events  are  reported).   The 
language significantly expanded a user's ability to control event reporting and propagation at the source of  
the event through use of predicates.  This event filtering concept is present to some extent in most modern  
trace systems, but DTrace focussed heavily on the use of user-defined and thread-local variables, associate 
arrays and aggregations to augment these filtering capabilities.  Furthermore, the flexibility of the tracing 
language meant  that  optimisation for  bulk  trace data transfers from the kernel into userspace was less  
critical.   This  reflects  the  origins  of  DTrace  as  a  kernel  tracing  facility,  with  adaptations  to  also  trace 
userspace activity.

Actions are prevented from modifying the system under observation, in all but a few situations and in well-
defined and regulated ways.  The system is dynamically instrumented such that when an event occurs,  
control flow transfers to an entry point in the DTrace framework which executes the handler with interrupts 
disabled, and finally control returns to the original call site.  Constructs like loops are not representable in the 
D language (which allows only forward branches), reflecting the focus on safety.

Multiple consumers of events are handled transparently by the framework, not by the event provider.  The  
consumer is expected to minimise dropped events by reading accumulated events in a timely fashion.  An  
option to increase the size of the per-processor event buffers is also available.  These higher level concepts  
(multiple consumers of individual events, reliable handling of data streams, making event drops visible to 
consumers,  and having flexible buffering mechanisms in terms of  memory allocation) are recognised as 
important requirements and must be reflected in a unified model for tracing and sampling.

Of particular interest in terms of our unified system-level tracing and sampling goal, is the DTrace concept of  
an unanchored probe.  Unlike the other probes which generate events as the flow of program control passes 
(executes) them, these probes are associated with an asynchronous source.  This includes a timer interrupt,  
which can be used to sample almost any data in the system and infer system-wide behaviour.  This allows 
data sampled in this way to be associated with this self-generated event and made available to consumers.

The DTrace literature presents a detailed case study of the use of DTrace to diagnose a problem originally  
identified through the use of a sampling based tool – mpstat.  This matches the general perception presented 
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here  and  observed  in  practice,  that  tracing  is  often  a  second-level  approach  for  fine-grained  detailed 
analysis,  but  often  the  trigger  for  analysis  is  a  higher  level  anomaly  detected  using  sampling-based 
techniques.  In this case the DTrace developers actually began their more detailed investigation by tracing  
every single invocation of the code which incremented the sampled counter – a testament to the extreme 
versatility offered by DTrace.

DTrace had its beginnings as a kernel level tracer, and this remains evident today.  While other tracing 
infrastructures focus on getting data out of the kernel into userspace, DTrace probe events are processed in 
the kernel for both user and kernel level tracing.  Other tracing systems (Desnoyers, 2009), are able to  
achieve significantly more efficient userspace focussed tracing, with less disruption to the traced process, by 
processing the events within the context of the traced process (Scott, 2011).

A primary focus of DTrace is live system problem diagnosis and performance analysis.  It is common in the 
traditional sampling-based performance tools and in many of the other tracing infrastructures to provide a  
retrospective analysis capability as well, often leveraging the same tools or presentation layer to assist user  
familiarity - no such effort has been reported for DTrace.  This could be seen as a reflection on the original  
primary kernel level instrumentation focus.  Alternatively, it indicates that a design focusing on processing 
events  in  userspace  is  more  amenable  to  permanently  recording  data  and  providing  both  forms  of  
information seamlessly.

One final noteworthy advancement made by DTrace is the concept of speculative tracing.  This allows a 
trace to be speculatively retained for a short time, after which it must be committed to the trace buffer (and  
made available to consumers) or discarded.  This feature is aimed at further filtering the event data at the 
source.  One situation where this may be useful is to generate a single event where information from the 
start and end of the event is available together, such as the parameters to a system call and its return code 
(allowing filtered events of failing calls, for example, with the original arguments to the call included in the  
event).

SystemTap

Sharing many of the features and design goals of DTrace is the Linux SystemTap tracing toolkit (Prasad et 
al, 2005).  Some of the stated aims of this system are to lift perceived DTrace restrictions, while attempting to  
maintain critical features like stability and safety in production environments.  Other differences are a result  
of the nature of the targeted platform – design decisions taken for tracing the Linux kernel were seen as  
different to those required for the Solaris kernel where DTrace was born.

SystemTap  introduces  additional  language  features  –  including  procedure  declarations  and  a  general 
purpose  looping  construct,  which  are  not  present  in  the  DTrace  language.   This  reflects  one  of  the 
SystemTap design goals which is to aid kernel debugging, and to this end it incorporated many more aspects  
that allow modification of the observed system (writing to memory, invoking kernel functions) when run in a 
trusted “guru” mode.

X-Trace

Some approaches focus on tracing one specific aspect of a distributed system.  Such is the case with X-
Trace (Fonseca et al,  2007, 2008, 2010), which is described as a pervasive network tracing framework.  
While the focus is clearly on tracing network requests, it is done in such a way as to encompass tracking  
requests through the entire networking stack, from beginning to end.  Due to the primary focus on networking 
and end-to-end request tracking, X-Trace has enjoyed some popularity in the web space.

X-Trace shifts away from the transparent approach typified by the dynamic tracers, and instead moves back 
toward extensive modifications of the instrumented components.  Such is the nature of the network tracing 
problem  –  in  order  for  X-Trace  metadata  to  be  maintained  across  arbitrarily  networked  systems, 
modifications (albeit optional) and extensions have been made to fundamental networking protocols such as 
HTTP, TCP, IP, DNS, and SQL to name a few.  Several novel approaches have been used to augment these  
protocols so as to minimise the level of disruption in adding instrumentation, such as the passing of metadata 
in specially formatted SQL comments, passed between communicating systems.
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The trace information can be examined, logged and reported at different points by different people in different 
administrative domains.  Thus, the person (or application) requesting tracing is totally detached from the 
person receiving trace reports.  The concept of a unique trace identifier is introduced, which is generated at 
the first instrumentation point and injected into every instrumented protocol packet.

It is a key design principle of the X-Trace system 
that it can use the trace identifier to reconstruct a 
“task tree” of sub-operations making up a task. 
Thus, X-Trace adds metadata into the same data 
path  that  it  is  tracing.   However,  the  collected 
trace  data  is  recorded  and  presented  using 
mechanisms that are detached from the original 
data path.  This protects against failure to report 
in  the  relatively  common  situation  of  network 
component failure.

Two  sample  visualisations  for  network  event 
traces are presented within the X-Trace literature.

Figure 1 shows an individual task trace tree, with several nodes involved (systems A through D).  The X-
trace visualisation shown in  Figure 2 is more typical though - presenting a top-down and left-to-right tree, 
with traces at the same network stack level shown horizontally and any sub-tasks (identified by edge type of  
“down” and parent identifier) immediately below.  

These  then  may have tasks at  the  same level  with  edge type  of  “next”  displayed horizontally  with  the 
preceding horizontal node identified through the “parent” identifier.

Another contribution to generalised tracing that X-Trace makes is evident in its metadata that aims to place 
the minimal necessary mechanism within the network to allow reconstruction of the path travelled.  The 
metadata includes a “task identifier” (a task is analogous to the concept of an individual request from earlier  
tracing toolkits) – this field is not optional, and is replicated between networking layers to aid in preventing  
layering violations along the path.  An optional three-tuple can also be propagated which is used to convey  
aspects of the trace tree.  The three fields are a parent identifier, an operation identifier and an “edge type”.  
The two identifiers encode edges in the trace tree, and are unique within a task (request).  The edge type 
indicates whether the metadata connects two adjacent nodes at the same layer, or between a node at one 
layer with a lower layer tree node.

As shown in Figure 3, the X-Trace metadata consists of:

• An initial flags field, which is primarily used to 
determine the length of the metadata structure 
based on the task ID size and which optional 
fields are active

• A  task identifier (must be unique, and as small 
as possible)

• An optional field, tree info which records causal 
relationships  in  an  operation  identifier.   There 
are three components to a tree info structure – 
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the  parent  identifier  (linking  traces  together),  operation  identifier  (component  identifier  within  an 
operation) and edge type (horizontal/vertical)

• Finally,  an  optional  destination field  exists  for  sending  trace  data  to  specific  loggers  or  other 
interested parties (if the reporting administrative domain chooses to allow that)

This metadata is the basis of the entire framework and must be as small as possible to attempt to address 
the requirement of minimal intrusion.  In X-Trace the metadata is replicated across layers, usually in the 
“optional” fields of protocols designed for extension, which is the majority of the common protocols.

Of significance from a unified tracing and sampling point of view – the X-Trace literature identifies the need 
for trace reporting systems to add global system state into the trace reports.  Although somewhat vague in  
this regard, it describes the need to associate particular examples of sampled data (such as “server load”  
with HTTP traces, and “queue lengths” with IP packet traces) alongside the trace data it is presenting.  No  
attempt to encode that information alongside or within the trace data is made, however, and how to address  
the problem of associating the two forms of performance data is left  up to the presenting device at the 
various layers of network stack tracing.

As with all tracing systems, X-Trace provides mechanisms to limit the amount of data traced and reported.  
Several techniques are described – sampling, batching and compression.  Sampling is done at the point that  
a complete task tree has been formed, not before, in order that the tree structure is not lost.  Batching refers  
to  the  batching  up  of  many  complete  trees  before  forwarding  on  to  reporting  nodes.   Compression  is 
performed on the batched trace trees, prior to sending on for reporting.

Also, as with the other trace systems, handling loss of traces receives special treatment.  This occurrence is 
particularly problematic in X-Trace, as it results in loss of nodes and edges in the reports, severely limiting  
their utility.  Unlike the other trace systems, however, precision timestamps are less of a focus for X-Trace 
(notably,  timestamps  are  not  included  in  the  metadata),  as  it  targets  more  the  identification  of  causal  
relationships and paths taken between networking components.  However, this is identified as a limitation in 
the presence of lost trace data – if timestamps were present, an attempt could still be made to present the  
partial trace data on a common time axis.

LTT, LTTng, and UST

The Linux Trace Toolkit  – LTT, or LTTng (“next generation”) in its current form – is a kernel level tracer  
specific to the Linux kernel (Desnoyers et al, 2007, 2009).  Its focus is low overhead static tracing, and high-
throughput extraction of event trace data from the kernel into userspace.  It has since been augmented with  
a separate userspace trace (UST) facility which operates with low overheads in userspace, including lockless 
trace buffer updates.

A compelling case is made for very low overhead static tracing for the Linux kernel (Bligh et al, 2007) through  
a series of real-world case studies.  Although it appears to conflict with the direction taken by the dynamic  
tracing approaches favoured by others, having a wide net cast over an existing set of critical core kernel  
functionality is demonstrated to be useful for getting an initial feel for the area in which a problem lies on the 
first time that it occurs.  Subsequent iterations on attempting to find the problem are facilitated through quick,  
simple instrumentation extensions adding to the existing set.   Static tracing provides better access to local 
variables and hardware registers, and the use of lockless algorithms have allowed the tracer to no longer 
have  to  disable  interrupts  (lowering  overheads and opening  up  additional  potential  trace  points).   This  
approach does require the kernel to be rebuilt, redeployed, and machines restarted.  However, the focus on 
fast  timestamps and low impact  tracing allows debugging  of  classes  of  problems,  such as  subtle  race  
conditions, that while very hard to hit and debug become more of a recurring problem when the number of  
machines involved increases.  This is the pathway of “always on” event tracing, which can complement the 
previously reported dynamic tracing mechanisms.

In addition to setting the benchmark in exploring the extents to which tracing overheads can be reduced, the 
LTTng literature describes other interesting tracing techniques.  In kernel tracing, the ability to have tracing 
enabled at all times but to stop when a particular event or condition is detected, to prevent overwriting of the 
trace buffer data with new traces is described.  This is used in a so-called “flight recorder” or “overwrite” 
mode, where trace data  buffers  of  fixed size are continually  overwritten by newer data  until  the critical  
condition is detected.  Further practical tracing lessons from the Linux kernel environment are presented, 
with  description  of  how  traces  help  to  communicate  problems  amongst  developers  from  different 
organisations and backgrounds to be able to “see” the details of these very difficult to reproduce scenarios.
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An approach to recovering (sampled) system metrics from kernel traces has been explored (Giraldeau et al,  
2011) using LTTng.  This paper provides insight  into the divide between kernel developers and system 
administrators which is of interest here.  Event traces tend to expose low-level kernel internal information,  
requiring a depth of domain-specific knowledge that many system administrators do not have.  Examples of  
being able to reconstruct the state of certain information off-line from trace records on disk are presented.  
The paper perhaps inadvertently makes an excellent case for the need for unified event trace and sampled  
performance data, as this entirely removes the need for such expensive off-line post-processing.

The LTTng focus remains on single-node tracing, and it is reported as successful in that space.  However, 
the need for tracking dependent events between clustered nodes and to follow dependencies between the 
nodes,  is  explicitly  noted  as  future  work  in  several  papers.   Amongst  the requirements  listed  for  such  
extension  are  low-overhead  methods  for  aggregating  data  over  the  network  for  analysis,  sufficient 
information for analysing inter-node communication and an analysis tool capable of presenting inter-node 
relationships and displaying multiple parallel traces.

Dapper

An evaluation of several years of experience from developing and using a large scale distributed production 
tracing system is presented in Dapper (Sigelman et al, 2010).  This system uses an enforced, minimalist set  
of  correlated  and  distributed  request  traces,  coupled  with  a  simple  API  for  higher  level  developers  to 
annotate traces.  It operates in a largely homogeneous production environment.  Dapper makes use of a  
global identifier to associate related trace events within a distributed environment, similar to the Magpie and 
X-Trace systems described earlier.

One of the cornerstones of the Dapper design is the “always on” tracing approach.  Everything that can be 
traced by Dapper is always traced, there is no concept of conditional activation.  This requirement clearly 
reinforces  the need for  minimal-cost  tracing  infrastructure.   The  implementation  addresses  this  through 
software efficiency, and through the use of a relatively small number of trace points at critical flow control  
points.  Furthermore, reduction of events via adaptive sampling at a higher level is performed for very high 
traffic  situations,  some time after  the  event  has  been consumed but  before  it  is  further  propagated  or 
committed to persistent storage.

As shown in  Figure  4 Dapper  traces  consist  of 
trees, spans and annotations.  The nodes of trace 
trees  are  named  “spans”,  and  each  is  a  set  of 
timestamped records encoding start and end time, 
possibly  remote  procedure  call  (RPC)  timing 
information,  and  optional  application  specified 
annotations.  Edges of the tree indicate a causal 
relationship between a span and its parent span. 
In addition to a human readable span name, spans 
also have an individual identifier and (optionally) a 
parent identifier.  All spans associated with a trace 
also share the trace identifier.  Note that it is typical 
for  a  span  to  contain  information  from  multiple 
hosts  –  an RPC span contains  information  from 
both  client  and  server  processes.   Timestamp 
skew between machines is noted as an issue, as it 
was for proposed LTTng extensions in distributed 
tracing.

The  Dapper  system,  like  X-Trace  before  it, 
performs trace logging out-of-band with the request tree itself.   This avoids affecting network dynamics, and 
avoids the assumption that RPCs are correctly nested (not the case if a result can be returned to a caller 
before all backends have completed).

The issue of security and information privacy is highlighted, and some of the issues are similar to those 
described for X-Trace – all trace systems must consider this issue, as trace event parameters will  often 
contain sensitive information.  The Dapper approach is to not record any payload data unless requested via 
application level annotations.
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The Dapper literature describes common user access patterns to the long-term stored trace data.  Access by 
trace identifier is common.  Bulk access to all  traces in parallel is facilitated by a map-reduce interface.  
Indexed access is provided to map from commonly requested trace features to trace identifiers, and the  
choices of index are noted as having been challenging, due to the increase in required storage.  Two indices  
were initially implemented – trace identifier lookups using host names and service names – however, the  
former was later removed due to insufficient user demand (relative to the storage costs).  Concluding from 
one particular example, a relevant issue in this context is highlighted – it is evidently non-trivial to integrate 
Dapper traces with general-purpose log file traces.

Other limitations identified in the paper include coalescing effects (such as buffered disk writes), where an  
individual traced request can be “blamed” inappropriately for a large unit of work, or where traced requests  
are batched and processed together.  The ability to perform root cause analysis is questioned – where higher 
level distributed system behaviour is relatively easily observed, effects such as delays observed in individual 
traces due to outside queuing effects are not.  One possible solution that has been used is to add application 
annotations to traces describing these parameters, but the problem is systemic and unlikely to be either  
satisfactorily  or  efficiently  resolved  with  this  technique.  Finally,  associating  trace  information  from other 
tracing  environments,  such  as  the kernel,  is  highlighted  as  an area  of  need  in  Dapper.   Difficulty  has  
evidently been observed in correlating the userspace trace instrumentation with the trace instrumentation 
from the kernels of individual nodes in the distributed system under analysis.  A solution involving snapshots 
of  a  few kernel  level  metrics  to  associate  with  an active span was under consideration at  the time of  
publication.

Intrusion Detection

In  the  security  research  domain,  some developments  relevant  to  our  project  are  worth  review.   These  
developments involve detection of anomalies in logged or traced data, with the aim of identifying security 
breaches.   Of  particular  interest  is  a  system that  combines  visual  and  automated  data  mining  for  live 
anomaly detection (Teoh et al, 2004) for use with the Border Gateway routing protocol (BGP).  This system 
gathers routing data much like we gather traced performance data, then filters and processes it to obtain  
statistical measures of anomaly for each routing update message.

Routing data is selectively transferred to the visualisation client based on a routing domain of interest, and  
can  select  both  live  and  historical  data  to  be  visualised  together.   Along  with  each  cluster  of  update  
messages,  the  anomaly  measures  are  also  presented  using  a  novel  “event  shrub”  visualisation  which 
resembles a horizon dotted with trees (“shrubs”) as show in Figure 5.  The stalk of each “shrub” pinpoints 
time locations, and the circular “foliage” has size and colour variations indicating the nature of the statistical  
or signature-based anomaly measures calculated for individual route update events.

NetLogger

Close to the level of analysis we are targeting is the NetLogger system (Tierney et al, 2003).  Originating in  
the high performance computing grid sector, this toolkit uses timestamped event logs to track end-to-end  
monitoring of applications and the underlying operating system.  The approach aims to identify high latency 
outlier requests and unexpected low throughput, and is based on a methodology of structured application-
level  logging.   Generated  logs  consist  of  structured,  self-describing  text  records  and  although  the 
inefficiencies of this format are discussed (many fields are repeated, and the use of text format produces 
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larger  data  volumes),  the  authors  initially  propose  that  the  simplicity  of  processing  outweighs  these 
downsides.  Noticeably, this is in contrast to many other event tracing advocates we have reviewed, and was 
likely influenced by design simplicity when working with arbitrary logged (text) data.  Furthermore, in more 
recent versions of NetLogger, a binary protocol is introduced with apparent orders of magnitude performance  
improvements.

NetLogger advocates the use of a hierarchical namespace of unique names for each logged event.  The use 
of a “levels of detail” concept as an option for filtering at both the event source as well as at the event  
consumer is recommended.  Finally, their concept of (trace) identifier is open-ended and flexible – supporting 
both globally  unique identifiers  as well  as the native identifiers  used with  application software (such as 
request and process identifiers).  The trace toolkit should not be rigid in how it allows traces and sub-traces 
to be identified, as it  is highly advantageous to identify and report on entities using the local application 
terminology.

In addition to the event log (tracing) components of NetLogger,  wrappers for standard Unix system and 
networking tools (vmstat,  netstat,  iostat,  snmpget) are used to augment the log streams.  This is given 
relatively little attention in the literature, however, and the primary focus appears to be around interpreting the 
event log traces.  Several  notes are worth making with the wrapper based approach – it  is  simple and 
requires relatively little maintenance.  However, it assumes a fixed sampling rate at the monitored host (each  
wrapped command will have its own mechanism for specifying sampling frequency).  Some difficulty may be 
observed with  data  coherency,  since each  wrapped tool  will  be operating independently.   While  similar 
frequencies  may be  achieved,  it  is  highly  likely  that  the  samples  are  taken  with  (possibly  significantly)  
mismatched timestamps within the sampling interval.

The NetLogger visualisation tool uses three types of graph primitives to represent different events.  It names 
these types “points”, “loadlines” and “lifelines” (each type represented in Figure 6 below).  Time is displayed 
on the X-axis and ordered events are shown on the Y-axis.

The  gradients  of  the  lifelines  show latencies  of  events  being  traced  through the  system,  and they  are 
generated by correlating trace events by timestamp and event identifiers.

A loadline is effectively a line plot, and connects values in a continuous segmented curve.  It is typically used 
to plot sampled data like processor utilisation (final three plots in Figure 6).  The point plot is used to display 
single occurrences of events.  In this example (first plot in Figure 6) it shows retransmitted network bytes, 
which is a sampled kernel performance metric, but it could clearly be used for event trace data as well, 
where the events are singular one-off events (e.g. SNMP traps), without distinct start and end times, and 
without an associated trace tree.

Mixing Metaphors

Prior research into the area of combining statistical sampling and event tracing is relatively limited – almost  
all work focuses on one approach exclusively.  In the few cases in software systems in wide-spread use 
where both approaches are supported (such as the Intel  Vtune profiler, and the Windows logman utilities), 
this is primarily done such that one technique is activated at a time to the exclusion of the other.
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Combining system level sampling with distributed event traces is identified as an area of need for  future  
research in the Dapper system (Sigelman et al, 2010), which presents a case study of a very large scale  
distributed tracing infrastructure.

An investigation into combining the techniques has been performed in the embedded system space (Metz,  
2004).  While more focussed on enhancing the profiling of activity in low powered embedded devices, this  
work is highly relevant to distributed system tracing as well.  The hybrid approach described there suggests 
balancing event tracing and statistical sampling through limiting the profiling data volume.  This is achieved  
by restricting profiling to short, focussed runs involving capture of trace data, and recording the remainder of  
performance  data  through  statistical  sampling.   This  would  appear  to  conflict  with  the  “always  on”  
requirement for tracing advocated by others more recently (Sigelman et al, 2010).  The work precedes the  
introduction of the concept of dynamic tracing, which was first published in the same year, listing the static  
nature of event trace instrumentation as a major issue with the approach.

The details of the implementation of their approach are not specifically presented, unfortunately, but they do 
state that it produces “two separate sets of profiling data [and] these two sources of information need to be 
combined and synchronized during post-mortem analysis”.  This leads us to believe there are significant 
differences  in  their  approach  to  ours,  which  combines  the  performance  data  at  sampling  and  event 
generation time, and maintains a unified data stream.  Despite these differences and a lack of detail as to  
their  approach,  this  paper  provides  us  with  good  clarification  of  the  issues  and  the  knowledge  that  a  
combined solution is indeed sought after even in these smaller scale embedded systems.

Performance Co-Pilot (PCP)

The PCP toolkit (McDonell, 1999) provides a system-level performance analysis toolkit suited to distributed 
system analysis.  It transparently supports live and retrospective analysis, and it aims to allow data from 
each component of a complex system to be incorporated into the analysis framework.

The mechanism through which individual components of a complex system are incorporated is agent-based.  
Each domain of performance data (hardware, kernel, database, application, services, and so on) typically 
has a single performance metric domain agent (PMDA) associated with it.

These agents export the current value(s) of performance metrics on request.  A performance metric may be a 
singleton (such as the number of context switches) or set-valued (such as the number of read operations to 
each physical disk).

Individual performance metrics are strongly typed.  Each must be one of:

• a free-running counter
Monotonically increasing value, such as the number of read operations to a database, or number 

of bytes sent across a network interface.
• an instantaneous value

Point observations, such as the amount of memory in the kernels page cache, or the length of a 
device driver queue.

• a discrete value
Relatively constant value, such as the amount of physical  memory or perhaps the maximum 

number of threads configured to service requests in an application.
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• an event record stream
A compound metric, which allows event traces to be encapsulated, such as records arriving in a 

log file, or events generated by tracing libraries.

The basic counter, instantaneous, and discrete types of performance metric, above, have proven sufficient to 
capture the essence of  sampled performance data from complex computing environments.  The values of 
these metrics are instantiated at an interval driven by the client (monitor) analysis tools.  It is extremely rare 
that any state need be maintained for sampled metrics on the instrumented system.  Rate conversion of 
counter metrics does require the value from the previous sample, but importantly this state is kept by the 
monitor tools.

The  event  metric  type  is  a  relatively  recent  addition.   Individual  event  records  have  a  timestamp  and 
parameters that are associated with the event when it occurs.  Event timestamps are not driven by the client 
analysis tools sampling rate at all.  However, within a given sampling interval, any number of event records 
may be generated, and the event type metric provides the mechanism by which these events (along with 
their timestamps and parameters) are propagated to interested analysis tools, possibly simultaneously with 
sampled metrics.

Two special parameters can be associated with event records.  An agent instantiating event metrics can 
choose  to  decorate  the  events  with  certain  flags.   The  initially  defined  set  of  flags  allow  structural  
relationships between distinct events to be represented.  In particular,  a parent-child relationship can be 
represented, as can begin-end event pairs.  The parent-child relationship allows arbitrary identifiers to be 
represented.  Identifiers name the event source – for example, a process identifier (numeric) might be used, 
or perhaps a web request identifier (character string).  The second special parameter is an optional count of  
missed events.  This provides a mechanism by which a client analysis tool can be informed that they are not 
keeping up with the rate at which events are being generated.

It  is  the  primary  purpose  of  this  research  to  investigate  and  instrument  real  world  problems  with  both 
sampled and event trace-based metrics,  and evaluate the effectiveness and difficulties in unifying these 
metrics.

Unified Metrics Namespace

PCP provides a hierarchical namespace of performance metric names which can be queried by analysis  
tools (clients) to discover the complete set of available metrics from a collector system.  These will very often 
differ between even homogeneous systems, and certainly between different operating systems.  The model 
for a typical monitor / collector exchange is as follows:

• monitor tool explores the available metric namespace hierarchy
• collector service responds with parts of the namespace (leaf and non-leaf nodes)
• monitor requests numeric performance metric identifiers for those metrics it chooses to observe
• collector responds with metric identifiers for leaf nodes (metrics)
• monitor requests additional metadata about chosen metrics
• collector responds with metric descriptors, which provide metric types, semantics, units, and so on
• monitor requests values for chosen metric identifiers
• collector responds with current values (sample taken or all event records from the previous interval)

For long-running client tools, the final two steps are typically performed in a loop and analysis or reporting is 
subsequently done with the latest returned values on each iteration.  In the case of retrospective analysis,  
the same basic model is used except the collector is a time-indexed archive of performance data instead of a  
live system.

Also,  the  above  model  is  a  streamlined  version  for  the  sake  of  simplicity,  which  ignores  the  slight  
complication presented by set-valued metrics.  For that case, individual values can be named, and there is  
an additional exchange involved with discovering those names and for restricting the set of returned values  
to a subset.

Note that the monitor tools requests for values are simply using sets of metric identifiers – this proves to be a 
lightweight yet still  flexible and dynamic requesting mechanism.  It  allows an individual client  to request 
different metric values on different intervals, and the resultant values always dwarf the request.  With event 
metrics in the request mix, this ratio is amplified (potentially significantly).
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Sampling-based Agents

The role of a performance metrics domain agent (PMDA) is to respond to requests from a performance 
metrics collection daemon (PMCD) process, on behalf of client processes.  Each is focussed on one domain 
of performance data – the kernel, a relational database, an application, a particular class of hardware, a web 
server, for example.  There is usually a one-to-one mapping with the requests outlined in the basic request 
model earlier for the collector system.  So, each PMDA has complete control over the set of metric names,  
values, semantics, types, units, and so on that it exports.  Different agents respond to requests in different  
parts of the metric namespace, and this division of labour is arbitrated by the PMCD daemon.

PCP includes a large number of agents out of the box; packaged, tested and ready to make metrics from 
their  domain available to the analyst.   Extension to individual needs is actively encouraged (and highly  
advantageous) using the PMDA shared library and API.

As  was mentioned previously,  the mechanics  behind  sampling-based metrics  rarely  require  state  to  be 
maintained on the part of the PMDA.  Agents using sampling only are thus far simpler than those using  
event-based metrics.  It is important to note that both classes of metrics can co-exist within a single PMDA,  
through the use of distinct metrics.

Sampling-based Visualisation

Representing sampled performance data visually is a well trod 
path, and the utility of line plots, stacked bar plots, scatter plots 
and  histograms  are  well  documented.   Much of  the  reviewed 
trace literature devotes time to presenting different  aspects  of 
visualising trace data, in particular in representing trace start and 
end times but  also in presenting causal relationships between 
components of a complete trace.

The PCP pmchart tool depicted in Figure 8 demonstrates some 
common and powerful user interface techniques that have been 
traditionally used in the sampling space.  These include stacked 
bars and line plots, with the X-axis showing changes in time, and 
the Y-axis displaying value ranges for the plotted metric values.

Note  that  this  strip  chart  utility  allows  visual  correlation  of 
performance  data  from  different  domains  –  here  we  show 
processor  utilisation  (physical  hardware  domain)  visually 
correlated with virtual machine counters (virtualisation driver domain).

Method

There is no unifying theory to guide this investigation, so a pragmatic approach has been taken.  Like most  
prior work in this area, the approach for assessing effectiveness of a potential approach is to build a system 
which  instantiates  the central  ideas  and  provides  the desired features.   Evaluation  then proceeds in  a  
realistic production environment where a number of case studies are undertaken to identify the strengths and 
weaknesses  of  the  approach.   This  environment  is  particularly  important  as  the  analysis  system must 
endeavour to minimise the changes is makes to the behaviour of the instrumented system.

This research has been undertaken in much the same way.  Due to the scope of unifying two approaches  
which have historically generated many individual projects independently, an existant system was used as a 
starting point for extension and further research.  This is the Performance Co-Pilot (PCP) toolkit.  It has been  
selected for several important reasons:

• long history of successful production deployments (over 15 years)
• open source project, so any new software developed can be evaluated in a peer-reviewed open  

environment, well-suited to research
• domain agent-based approach that lends itself to extension
• provides a clean separation of responsibilities between agents (collectors) and clients (monitors)
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• stable and well-documented interfaces suitable for extension with new domain agents as well as new 
monitoring tools (and with clear separation of responsibilities)

• researcher access to production environments where it is deployed
• researcher familiarity with the software

Software Artefacts

A brief summary of the software produced during this study is warranted.  A detailed rationale and analysis of 
each component is provided in the case studies following.  The needs and opportunities presented by each 
case study dictated the direction that development work took.

On the collector side, several new PCP agents have been created (pmdarsyslog, pmdabash) and extensive 
modifications to an existing prototype (pmdalogger) has been undertaken.  An API for PMDAs implementing 
event trace metrics was created, and existing code refactored to make use of it.

On the monitoring side, extensions have been made to the pmevent client tool to perform event filtering, and 
extensive modifications have been made to pmchart to experiment with a unified visualisation model.

Event Trace-based Agents and Queueing

The initial introduction of event trace metrics infrastructure into PCP (early 2010) brought about the need for 
agents  to  keep  track  of  which  clients  have  expressed  interest  in  which  event  metrics  they  export.   A  
connection-oriented protocol is thus highly advantageous for this approach.  Not only that, but the agent 
must track which events have been sent  to which clients  so far,  as the client  tools  may be distributed 
remotely on the network and may be requesting the latest set of values (both sampled and event arrivals) on 
different intervals.  These interactions are shown in Figure 9.

Further complicating matters is the need to minimise the extent to which the instrumented system is affected 
by being monitored.  A direct requirement from this is a need to limit the amount of memory that may be used 
to hold buffered event records in the PMDA process before they are sent to clients.  In the situation that 
events  arrive  more  quickly  than  the  clients  are  draining  them,  the  “missed”  event  counter  mechanism 
described earlier is used to inform the client of the number of events they missed out on.

Fixed sized buffers holding reference counted events (not multiple copies of the event data), and per-client 
tail-queue based data structures have been used with some success to implement these requirements:

• If no clients are expressing interest in an event metric when one of its events is delivered to the 
PMDA, then the event can be discarded;

• Otherwise, newly arriving events are added to the front of their respective queues;
• A pointer to the last (tail) event that each client analysing event trace metrics has seen (from the  

previous query) indicates where each client is up to in the queues;
• As each event is shipped off to a client, the tail pointer for that client is updated, and a check is made 

to see if that client held the last reference to the event.  If so, after it has been sent the event can be 
safely discarded and the memory reclaimed from the fixed size pool.
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Visualising Event Traces

Generic  concepts common to several  of  the event  tracing tools  reviewed have been identified.   These  
represent characteristics shared by all event trace metrics independent of performance metric domain.  The 
Performance Co-Pilot  pmchart  utility  has been extended to  display event  metrics  using this  new visual 
representation (Figure 10).  The salient characteristics identified for further visual exploration are:

• Event identifiers and timestamps
• A single point represents the presence of an event
• All events sharing an identifier are mapped to the same Y-Axis value, and the same colour

• Parent-and-child relationships between events
• A vertical line associates a parent event with a child event

• Start-and-end relationships between events
• A horizontal line drawn from the start event to the end event using the same colour as all 

other events for that identifier.

Where  these  relationships  between  two events  are  being  depicted,  it  is  required  that  the  events  have 
identifiers which can be used to visually associate the different components.  These identifiers are also used 
to distinguish events on the Y-axis of the graph.  For this study a very simple algorithm mapping between 
event identifier and Y-axis value was used.  Events which have no identifier are bucketed into a common Y-
Axis  point  and rendered  at  the lowest  point,  all  in  the same colour.   By definition,  these have neither  
horizontal nor vertical connections, and are represented by points only.

 
As was reported in the X-Trace (Fonseca et al, 2007) and Dapper (Sigelman et al, 2010) environments, this 
visualisation fundamentally requires event identifiers in order to display a richer representation.  The basic 
layout algorithm used was selected for its simplicity, far more compact representations could be achieved 
using more advanced techniques (force-directed layout, simulated annealing, etc.) but for the purposes of 
our study here, these were not seen as required and have not been attempted in this initial implementation.
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With the foundation of a unified visualisation model now in place, we move onto the finer details of interactive 
performance analysis with the modified pmchart utility, as relates to our unification goals.

When viewing sampled performance data, the graph can be interacted with by increasing and decreasing the 
zoom factor.  This allows a coarser or finer granularity of both event and sampled data display.  Note that in  
the pmchart tool, as is typically in this space, this affects the X-axis (time) only.  

Zooming in allows fewer values to be displayed in the same visual area on the display.  In the sampled case, 
this  tends  to  simply  draw  ones  attention  to  a  particular  spot  without  allowing  more  information  to  be 
expressed visually.  However, in the case of trace data it was found to have the additional, important effect of  
displaying more and more events.  This is because the event traces typically are generated rapidly and with 
small time offsets, giving (at coarse granularity) the impression of just one or two events.  As one zooms in,  
however, the small differences in the event timestamps become more pronounced and more noticeable.

Zooming out causes a wider range of X-axis values (time) to be displayed.  For tracing, this has the effect of 
allowing the connections between related events be more easily discerned, while reducing the individuality of 
specific events (points) – that is, individuals are more likely to overlap with peers in close time-proximity.

The user is also able to gain finer detail about aspects of a sampled graph through use of the pointing device 
and selection of a point of interest.  Because the values displayed in a sampled graph have both X-axis 
(time)  and Y-Axis  (metric  value)  significance,  the  user  can  be  informed of  a  single  metric  value  at  the 
selected  point.   A cross-hair  visual  indicator  is  used,  and  the  time/value  pair  is  reported  at  that  point.  
Pressing and moving the pointer provides a continual feedback of these time/value pairs.  This has proved 
highly useful in practice.

The event trace graph, however, shows the trace identifier as Y-axis value.  This is a discrete value, and 
does not exist in a continuous space as with sampling-based graphs.  The data associated with an event (the 
event  parameters)  is  more  complex  than  a  time/value  pair.   Furthermore,  with  the  possibility  of  dense 
clustering of events it has been identified as desirable to be able to select not only individual events, but  
closely related groups of events.  An extended selection model for event traces has been implemented for 
this reason, allowing groups of events to be selected at once using an “area picker” (depicted in Figure 11). 
Selection  of  one  or  more  events  results  in  visual  feedback  identifying  selected  events,  as  well  as  a  
secondary window being displayed with details of the selections (timestamps, and all event parameters).
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Log Streaming Case Study

Capturing system event log information from a collection of geographically distributed systems in a reliable  
and useful way presents many challenges. In order for operations and engineering triage teams to filter  
important events from this huge amount of information, events need to be shipped to a central location,  
reliably, where they can be indexed and searched.  Searching is typically keyword and time range based.

A study of the log streaming present in a production web application has been undertaken.  This deployment 
comprises  a  series  of  loosely  connected  machines,  cooperating  to  provide  a  coherent  service.   Each 
machine has a  system log,  which coordinates kernel  and system-level  logs using the  rsyslog  software. 
Additionally, the web application itself has been configured to send its logs to the rsyslog daemon.

This system logging daemon has been instrumented to extract both event record and counter metrics.

Centralising Event Logs

Ideally log streaming is done in a way that is both timely and removed from the systems under observation.  
Being  timely  allows  events  relevant  to  an  active  production  problem  to  be  quickly  available  to  triage  
personnel. Being removed from the production system reduces the impact on the observed system, and also 
allows  for  collation  of  events  from cooperating  systems  (separate  databases,  application  servers,  web 
servers and storage servers, for example).

In addition to the events logged by the operating system kernel and the system daemons, it is also highly  
desirable to capture application events as well. For minimal operational maintenance overhead, these should 
all be managed by a single, reliable event shipping system for application logs.

This case study documents the design and deployment of one such system, and focuses on the performance 
instrumentation used for monitoring and problem diagnosis in the event management service itself.

rsyslog is the default system log daemon on most Linux distributions today, and it provides efficient, reliable 
end-to-end delivery. It turned out to be easily instrumented - providing both its own metrics and mechanisms  
for adding metrics specific to our needs.  Both sampled and event trace metrics have been made available.

The design caters for a fairly typical medium-sized web application deployment. Each data centre hosting the 
application (globally distributed) contains several racks of equipment dedicated to delivering the service. As 
shown in Figure 12, individual racks are populated with closely cooperating machines, each generating their 
own system logs and application logs. 
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Figure 12: Log Stream Design



Deployment and Instrumentation

It was highly desirable to gain insight into many levels of the process around transferring logged messages. 
Identifying hosts generating too much traffic, or hosts not generating any log traffic (misconfiguration) was 
initially important - so, event counters, and cumulative byte counts of events generated was required. It was 
also important to be able to see these data rates alongside the network interface data rates, to understand 
the additional load generated through live streaming of the event log data. 

The rsyslog daemon runs on each and every machine involved, so low overhead is a desirable attribute in 
any instrumentation added. Not all of the machines are configured the same way though, as can be seen in  
Figure 12.   Every host in the system generates at least its own local system logs.  The event "forwarder"  
systems (depicted at the top of each of the three racks) are sent all of the events generated by systems 
within a rack, and they then forward them on to the next node in the system (either another forwarder, or the  
indexing  system).   The  event  "indexers"  (right  hand  side  indexing  host)  are  responsible  for  creating  a 
searchable index of all event messages from all systems.  So the configuration of rsyslog differed from host 
to host and a great deal of care was required in the roll out.  Misconfiguration can result in forwarding loops, 
causing loss of functionality and overall network performance degradation.

On inspection, it turned out that there is existing instrumentation for the internal workings of rsyslog. It must 
be explicitly enabled - both at the source level and at runtime. To enable the instrumentation in an rsyslog 
build, the --enable-impstats configuration flag is needed.

A two-pronged  approach  to  instrumenting  the  rsyslog processes  has  been  taken.   Firstly,  the  internal 
instrumentation has been exposed as PCP metrics.  Secondly, in addition to the path the messages would 
usually take (to a local log file, forward on the network, etc.), all arriving message are also enqueued to local 
named pipes.  Events (messages) arriving on these pipes are then turned into PCP event metrics.

To achieve these levels of instrumentation, the additions to the rsyslog configuration show in Table 1 were 
required.

        # Provide rsyslog statistics (pmdarsyslog)
        $ModLoad impstats
        $PStatsInterval 5
        syslog.info                     |/var/log/pcp/rsyslog/stats

        # Performance instrumentation (pmdalogger)
        local0.*                        |/var/log/pcp/logger/applog
        *.*;local0.none;syslog.!=info   |/var/log/pcp/logger/syslog

Table 1: Configuring rsyslog

The first section instructs rsyslog to load the statistics module, and to export the current state of its statistics  
every  5  seconds.  With  the  configuration  shown,  these  are  exported  to  the  named  pipe  at 
/var/log/pcp/rsyslog/stats.  This named pipe is drained by the PCP pmdarsyslog agent, which was created 
specifically for this experiment, and it exports the following PCP metrics:

        rsyslog.queues.size                  rsyslog.imuxsock.submitted
        rsyslog.queues.maxsize               rsyslog.imuxsock.discarded
        rsyslog.queues.full                  rsyslog.interval
        rsyslog.queues.enqueued              
        
                 [ “imuxsock”: counts related to system log input messages on Unix domain sockets ]
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Figure 13 depicts the use of these sampled values to correlate logging behaviour with overall network traffic 
on an instrumented host.  With existing knowledge of the load in the time ranges depicted, one can tell that  
between 14:04:20 and 14:04:44 an increase in the count of events enqueued to rsyslog is observed, and that 
these are not Unix domain socket events.  Rather, they have originated from the outside network (arriving on  

network  interface  eth1).   At  this  stage we have no 
deeper visibility into the contents of these messages.

Administrators  managing  these  rsyslog based 
systems  found  it  worthwhile  to  monitor  the  queue 
fullness and message discard count, as they proved 
to be good indicators that  a node might  not  be be 
keeping up.

In  addition,  sampling  the  interval  metric  on  an  idle 
system  provides  another  handy  litmus  test  -  if 
messages arrive more frequently than the configured 
interval (five seconds in our case), then it indicates a 
node  somewhere  is  forwarding  its  instrumentation 
where it should not be (i.e. a misconfiguration).  This 
suspicion can be confirmed by “drilling down” into the 
payload  of  the  event  metrics  –  the  actual  logged 
messages.

The final two configuration lines above are feeding all 
application  (“local0”)  and  other  log  traffic  into  two 
named pipes (fifos) for processing. These events are 
consumed  by  pmdalogger,  a  second  PCP agent. 
This agent receives all log traffic from the two streams 
(application  –  “applog”  /  system  -  “syslog”),  and 
exports  a  number  of  PCP  metrics  describing  the 

observed events.

      logger.perfile.applog.bytes
      logger.perfile.applog.count
      logger.perfile.syslog.bytes
      logger.perfile.syslog.count 

An interesting finding from beginning to use this event 
data is that simply counting the events as they arrive 
(in addition to making the event payload available), is 
trivial and highly useful.   It  turns out that a common 
problem  with  event  records  is  understanding  firstly 
whether they have arrived at all, and secondly being 
able to distinguish the difference between “no events 
are arriving” and “all events are being filtered”.  This is 
made easy by exporting a global counter of events that 
have arrived at the PMDA.

Similarly, it is simple to add a second counter metric 
which exports the volume of event trace data that is 
arriving  at  the  PMDA,  and  this  is  again  extremely 
useful in practice.

Figure 14 shows these values being depicted in the PCP charting utility.  The topmost graph (stacked bars)  
gives an indication of log volumes for the monitored rsyslog process (application logging in magenta, system 
logging in yellow).  The lower graph shows the event rate (line plot) for application logs and system logs, as 
rate-converted counter metrics.  The strong correlations here indicate that much of the system-level log traffic 
is being caused by application-level activity.  This is relatively common in this case study – for example, a  
user interacting with the application may cause mail to be generated, which invokes the local postfix mailer, 
which generates system-level logging as it  attempts delivery.  This is a multi-step process, with multiple 
system log messages from a single higher level application operation.
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Figure 14: System Log Event Throughput

Figure 13: System Log Event Arrivals



Event Analysis and Filtering

The  pmdalogger PCP agent  we mentioned earlier has visibility to all event traffic (log messages), and is 
separately counting application and system log traffic.  It has been used to inspect log contents (for checking  
event arrival,  for diagnosing host  misconfiguration,  and for verifying formatted message validity) in what  
proved a much more convenient way than snooping the raw network traffic.  In addition to the (sampled) 
counter  metrics  described  previously,  and  for  the  purposes  of  the  current  research  it  also  exports  the  
following event records as performance metrics:

        logger.perfile.applog.records      logger.perfile.syslog.records

At this stage of the project, we only had a simple client tool for decoding event records (later in the project, a  
more powerful visualisation utility was implemented).  This was the command line utility  pmevent, which is 
the first and simplest event tracing tool.  Even in this basic "text dump" form, insight was gained by being  
able to see the exact traffic passing through each output stream, and configuration problems were diagnosed 
and resolved through its use.

Here the importance of event filtering was emphasised in a practical setting.  One issue making problem 
solving difficult using event data from individual events is the volume of data to sift through.  When events  
are arriving rapidly, it is impossible to know which hold information of interest and which are noise.

In experimenting with ways to address this problem, the pmevent utility was extended with a new -x option 
(shown  in  Figure  15).   It  provides  a  mechanism for  server-side  event  message  filtering  using  regular 
expressions.  A monitoring client (pmevent) sends a string to the collection agent (pmdalogger) for a specific 
metric.  In this example, it allows the user to match only system log messages that are related to the sshd 
process, by applying a regular expression filter on the contents of the system log events.

The filter in the pmdalogger agent is maintained per-client, so other users also watching event metric values 
could specify a different filter.    This is an extension to the earlier  model provided for a typical monitor / 
collector exchange – just prior to requesting values for individual metric identifiers, an additional (optional)  
exchange is inserted.  This allows the provision of a metric-specific filter.

In the cases studied to date, and those foreseen in the near future, it is expected that a string or short script  
will suffice for the filter.  In this case, a regular expression (text string) was used, but in the case of a dynamic  
tracer like SystemTap or DTrace, a script in the respective language would be needed (also passed across  
the wire as text).  This is identified as a requirement for any generic performance tools that wish to handle 
both sampled and trace metrics.
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Figure 15: Console Event Reporting and Filtering



Security-sensitive Parameters

One final observation can be made from this case study.  It was found that additional levels of security were 
required for the event traces before the instrumentation could be deployed into the production environment.

The  parameters  of  the  individual  events  are  so  detailed  that  they  contain  potentially  security-sensitive 
information, and with the distributed collector/monitor model PCP offers these parameters can be queried 
remotely.  In this case study, system logs can be used to identify the access patterns of individual users, 
including user names, source system and system access method, details of projects they were working on 
and a daunting array of other low level information that could be used by an attacker in any number of ways.  
Not only information about users of the application are logged, but also the system administrators details and  
access patterns.

Contrast this to the simple, often numeric, values that are typical of sampled performance metrics.  This is 
identified as a second requirement of any performance collector components that export event trace metrics 
– consideration must be paid to the security implications of doing this, and access controls are mandatory.

For this case study, extensions were made to  pmdalogger to ensure the requesting client system is in an 
access controlled list of hosts that have been granted access to event traces from the collector host.  A more  
complete solution to this issue would involve a user-based access control mechanism, such that access to 
individual metrics could be allowed or disallowed for different users.  This is planned as future work, but for 
this specific study the simpler host-based model proved sufficient.   Additionally, to prevent over-the-wire  
snooping, encryption is also planned as a future extension.
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Data Warehouse Case Study

Servers from the production environment of a globally distributed SaaS company are recording data about 
many  aspects  of  system performance  around  the  clock.   While  invaluable  for  triaging  and  diagnosing 
individual  issues as they arrive,  the recorded data is  not  easily  used for  comparing some or  all  of  the 
geographies to each other over long time periods.

A performance  data  warehouse  has  been  implemented  to  provide  technology  decision  makers  with  a 
powerful  querying mechanism for this higher level  information.   The raw data covers physical  hardware 
utilization for active servers, application internal metrics (request rates, response times), storage utilisation, 
network bandwidth consumption, and so on.  The same performance metrics are available for a number of  
different  datacenters,  and  with  the  added 
dimension  of  time,  this  forms  a  business 
intelligence “cube” depicted in  Figure 16.  The 
goal is to be able to quickly see long term trends 
for  comparable  services  across  data  centres, 
summarising  vast  amounts  of  historical  data 
offline  for  rapid  online  interrogation  and 
reporting.   Overall  trends  are  relatively  easily 
observed,  and  statistical  outliers  or  otherwise 
unusual  patterns  of  activities  stand  out  when 
comparing like to like systems - as in Figure 17.

Metrics  are  collated from the fine-grained per-
host  daily  logs,  rate-conversion  of  counters  is 
performed,  per-minute  values  are  calculated, 
and everything is fed into the data warehouse 
for off-line preparation.

This initial data extraction is a time-consuming 
process.  It is performed weekly and outside of 
business hours.  It forms the first phase of the 
ETL process (Extract, Transform, and Load) that is typical of a business intelligence system such as this.

In this case, the extraction phase involves reading log files from the past week gathered from machines in  
many different datacenters, and completes in around five hours of elapsed time.  This import is an automated  
process, and insight into where the time is spent during extraction would be useful in determining the effects 
of growth in the data being imported.

This is used to plan for new datacentres coming online, and in seeking areas to optimise in the overall 
warehouse import process to ensure the batch load (Extraction) does not extend into working hours, and the 
processed (Transformed, Loaded) data is available as soon as possible.
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Figure 16: A Performance Cube

Figure 17: Sample Data Warehouse Report



Instrumenting the Extraction Phase

Scripts handle the exchange of data from the performance archives, into SQL statements.  These are POSIX 
shell scripts which execute command line utilities to extract the log data and also to produce the SQL that 
inserts the data into the warehouse.  The scripts run on a logs server, with local storage for the log files, and 
send data in the form of SQL statements to a remote warehouse server.

Both machines are running the Performance Co-Pilot software, sampling the regular array of system level  
and database-specific metrics suitable for these hosts on a relatively frequent interval (typically using ten 
second intervals).  In addition, the extraction scripts have been instrumented such that each shell command 
executed is injected into the PCP framework using a new experimental PMDA – pmdabash – custom built for 
the purposes of this case study.

Using features of current versions of the bash shell, this co-opts the well-known “sh -x” tracing mechanism, 
but instead of reporting each executed command on the standard error stream of the shell as it is executed,  
these trace events are sent to a named pipe which the script initially creates.

The PCP bash PMDA running on the logs server detects when each new shell script is started, and begins 
reading events (command execution traces) from the named pipe until each shell completes.  As described  
in the earlier methodology, these events are then available to PCP client tools for recording, reporting (as in 
Figure 18) and visualisation along with the sampled metrics.

      bash.xtrace.records

For good measure we also track the total number of events observed and export this count as well as an 
additional PCP metric.

      bash.xtrace.count
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Figure 18: Sample Script Instrumentation



For every command (event) executed by the instrumented shell scripts, a timestamp and several parameters  
giving details of the command are also extracted, as follows:

      bash.xtrace.parameters.pid
      bash.xtrace.parameters.parent
      bash.xtrace.parameters.lineno
      bash.xtrace.parameters.function
      bash.xtrace.parameters.command

This is a particularly interesting instrumentation case study because of the richness of the event parameters.  
They provide parent-and-child relationships when one instrumented shell  script  executes another.   They 
provide start-and-end pairs when a script first enables tracing until it exits.  The nature of the import process 
is such that there are both short-lived and longer-running scripts, the latter executing the former as child 
processes.   Also,  the shell  provides some additional  event parameters of interest  to analysts too – line 
numbers and shell functions, and of course the executed commands and their full command line.

This can be accomplished without modification to the underlying bash process, although the scripts need to 
be instrumented in order that the pipe be created and used.  A trivial example follows, which produces the 
sample console shell trace shown earlier in Figure 18.

        #!/bin/bash
        . /etc/pcp.sh               # make instrumentation available

        pcp_trace on $0 $@          # enable tracing to a named pipe
        sleep 2
        echo “g'day world”
        exit 0

Table 2: Shell Event Trace Instrumentation

Process Visualisation

Instrumentation from the full data warehouse import execution has been analysed.  The primary goal is to  
gain a deep understanding of where the elapsed time is spent during the import process, such that decisions 
can be made about where optimisations could be made, if indeed they should be made at all.  These are 
both production systems with several different (concurrent) uses – we have not attempted to isolate these 
runs though, as this is unrealistic – we want to observe the system exactly as it operates in reality, which  
means some noise activity must be dealt with.

Starting with the high-level sampled operating system metrics related to processor, network, storage, and 
memory utilisation, the following initial observations have been made:

• Aggregate processor utilisation for both systems (database  warehouse  and  logs  import servers) 
has periods of saturation followed by idle times.  Relatively constant background activity is observed 
from other, unrelated, work as well.

• Network traffic on both systems has short bursts of saturation followed by long idle periods.  Some 
background traffic is also present, and is not constant like the processor activity but appears much 
more random.

• Both systems have effectively sized memory subsystems, and memory is acting as an effective 
cache for the entirety of the import run for both systems.  Based on the observed sampled data we  
quickly discard further interest in memory as a potential performance bottleneck.

• The logs import storage subsystem shows some initial read-dominated disk I/O load while the data 
to be imported is read from stable storage.  This is a relatively short period however, and once that 
data has been read into memory (buffered I/O), subsequent passes of the import show no additional 
I/O activity at  all  (consistent  with the earlier  memory utilisation observations).   On the database 
warehouse server, at no time is disk I/O a limiting factor – SQL updates streaming from the network 
are written asynchronously, in an effective and efficient manner.

At this point, using sampled operating system data alone we have an good overall picture of performance  
and platform utilisation during the process, and the analysis focus shifts to using the additional trace data we 
have gathered.
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An example of unified trace and sampled data graphs is shown in Figure 19.  This shows activity on the logs 
server - network interface traffic and processor utilisation metrics (top and middle), and event traces from the 
import bash shell scripts in the final (bottom) graph.  They share a common time axis, along the base.

A number of fascinating observations can be made from these graphs:
• Being able to visualise the child shell processes (the horizontal multi-coloured “step down” effect) 

from each other and their common parent (the flat yellow line, correlated using the shared time axis 
is of significant value to the analysis.  Further, the ability to select individual events and examine the 
event parameters (the commands being executed, and their arguments) associated with these child  
process events gives effective, rapid feedback as to which part of the import process is executing at  
the time of the selected event.

• In addition to this feedback around progression of the import process, we also receive effective  
correlation feedback from the sampled graphs as to which resources are most heavily utilised at any 
particular time point.  We observe that the import process progresses in phases where we are CPU 
resource limited (scanning through raw data, producing SQL update statements), followed by an idle 
period of similar length, followed by the next CPU limited section.  One might postulate that the 
network transfer correlates with the time we generate no new events (and associated lack of CPU 
utilisation).  However, sampling the network traffic metrics shows us there is no change in traffic out 
at  this time.  The analysis proceeds to the warehouse server where the truth is revealed – we 
become CPU bound on the database during this time, and the driver script is blocked while the SQL 
update statements complete before continuing to the next phase.

• The green rectangular highlight area in Figure 19 shows another interesting phenomenon.  Clusters 
of events – more dense initially (this is due to several children scripts being started all at once, in 
parallel), then some finish quickly, and there are some stragglers.  Correlating this trace data to the 
sample CPU utilisation data, we observe that the system is CPU bound initially, then with a slight tail  
(while stragglers finish), and then dropping off completely to background utilisation levels for a time 
(for reasons described in the second point above).

• As a generalisation of  the previous two points,  one can observe that  both event clusters (many 
points in close time proximity) and the horizontal event begin-end pairing concept, provide highly 
effective visual correlations with the metrics from the sampled graphs.
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Figure 19: Warehouse Import Drill-Down



A number of potential areas for improvement have also been identified through use of the extended pmchart 
tool.  When dealing with large numbers of events, improvements around interactive response time would be 
helpful.  This might be achieved through a transparent overlap-culling process, hiding events with the same 
identifier and in close temporal proximity.  Also, providing the user with a client-side filtering mechanism may 
be useful.

While demonstrably useful in its current form, the selection mechanism could also be improved further.  In  
the  situation  where  dense  event  clusters  occur,  as  described  earlier,  the  point  selection  mechanism is  
somewhat ineffective due to the close proximity of events.  Additionally, when selecting groups of events in  
these clusters, the simple pop-up window quickly becomes overrun with detail which scrolls off the screen.  A  
more sophisticated detail display window, with a mechanism for driving intelligent client-side filtering would 
be ideal.

Future work

Per-user security.  The workaround put in place (discussed at the end of the first case study) is a stop-gap  
measure.   A more comprehensive authentication model is  needed, such that  an individual  user  can be 
identified and allowed access to only that trace information that they should have access to.  In addition, 
communicating trace data with sensitive event parameters over the wire warrants extensions to the over-the-
wire protocol to at least optionally encrypt this information.

Validation through additional tracing agents.  Extension into additional domains to further assess suitability of 
the  agent-based  model  to  event  tracing  -  particularly  the  more  common  tracing  frameworks  (ETW, 
SystemTap, DTrace, LTTng) - would allow many more users and much more trace data to be injected into 
the system.  This would provide further insight into whether the techniques described for unifying the two 
performance models are generally applicable.

Consideration for retrospective analysis and event filtering.  The approach taken to filter events at the PMDA 
level,  with  domain-specific  filtering,  is  a  good approach  allowing different  tracing agents to  be properly 
configured in the live mode of operation (e.g. with DTrace scripts, 
SystemTap scripts, ETW XML configuration, and so on - depending 
on the tracing domain).  However, when performing analysis over 
historical data, this model no longer applies.  This is highlighted in 
Figure 20 (especially when compared to Figure 9).

The  performance  archives  are  such  that  they  may  be  totally 
removed from the monitored system, and the contents analysed or 
replayed  elsewhere.   This  suggests  that  a  generic  filtering 
mechanism suitable for the larger amounts of historical data would 
be useful.  It could perhaps use the same user-facing mechanism 
as in  live  mode (the  pmevent  -x  option,  as in  Figure 15)  but  a 
purpose-built  language  that  allows  filtering  of  any  event  metric 
would be required.  Fortunately, this is made simpler by the fact that 
the  metadata  associated  with  all  event  parameters  has  been 
captured in the archive as well, but it would still be a significant area of further work well worth researching.

Visualisation  improvements.   In  the  area  of  selection  feedback  for  events,  it  would  be  worthwhile 
investigating a display mechanism that goes beyond the simple pop-up window prototyped here.  A tabular  
display of the events and their parameters from an initial selection might allow subset selection, which could 
be fed back into the original event display (providing a visual client-side filtering model).

Layout of the new event trace graphs is another area where much improvement could be done – both in 
terms of  positioning the elements,  as well  as rendering performance.   Initial  experimentation with  large 
numbers of events shows that the simpler models begin to fall down as the number of visualised events  
increases.
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Analysis



Conclusion

Understanding and improving end-to-end performance of requests passing through a distributed application 
or other complex system, is a difficult undertaking.  Information is available in the form of sampled metrics  
and event traces, and use of both forms at various stages of the analysis process has been demonstrated to  
be valuable.

In order to inform our research as to the best methods for merging the collection and presentation of these  
two sources of performance data, we have cast a critical eye over potential methods for mining this data – in  
both an automated fashion, so as to reduce or classify the data before presenting it, and also visually.

The research literature indicates that there is a clear and repeated need for combining these sources of data. 
Some have gone so far as to attempt to reconstruct sampled data from system event traces, which becomes 
unnecessary with a more flexible unified data model.  Several very large scale computing environments are 
reporting excellent  results using exclusively one or the other analysis technique. Providing a framework 
where both event trace and sampled data are extracted and presented side-by-side and on equal footing has  
proved an intriguing area of exploration.

In the early stages of investigation, fundamental differences in requirements around security were reported.  
These result from the fine-grained details encoded in event traces, which are not present with the generally 
coarse sampled data.

A separation between analysis (client/monitor) and data extraction (server/collector) is common in sampling 
based tools,  and this separation can be used to implement live monitoring and retrospective monitoring 
transparently.  For analysis tools that wish to use both sampled and traced metrics, event tracing presents an 
inherent need for these tools to be able to initially transfer filtering information to the extraction framework.  
This information is used to configure the tracing for the analysis tools on a per-user or per-session basis,  
allowing  for  multiple  concurrent  consumers  of  event  traces  (the  traced  event  only  happens once).   By 
contrast, sampling is relatively cheap and multiple samples can be taken in quick succession by different 
users without interference with each other or the system under observation.

Exploration of a combined mechanism for visualising sampled and traced metrics has been undertaken. 
This presents direct visual correlation by aligning the charts around a shared time axis.  A representation of 
the inherent structure that exists between some events has been trialled, demonstrating that significant value 
can be gained by associating identifiers with events at the time they are generated, and propagating that  
through the monitoring system to the analysis tools for display.  Issues around display “zoom” levels have 
been discussed, and a tendency for event trace data to visually overlap has been found which exists to a far  
lesser extent with sampled data.  Differences in the requirements of the interactive selection models used  
with each has also been discussed.

The postulation that a performance analyst gains from unifying event trace and sampled performance data  
has clearly been upheld.  The ability to “drill down” into far greater levels of detail has been demonstrated to  
be highly effective.

Finally, the agent-based domain model that is commonplace in toolkits such as the Performance Co-Pilot,  
begins to show promise as a mechanism for combining trace data from multiple trace sources.  Generic tools  
that can combine both sampled and traced performance data from arbitrary instrumentation sources have 
significant value.
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